已知函數(shù).
(Ⅰ)若,且對于任意恒成立,試確定實數(shù)的取值范圍;
(Ⅱ)設函數(shù)
求證:

(Ⅰ)(Ⅱ)詳見解析

解析試題分析:(Ⅰ)是偶函數(shù),只需研究對任意成立即可,即當
(Ⅱ)觀察結論,要證,即證,變形可得,
可證.問題得以解決.
試題解析:(Ⅰ)由可知是偶函數(shù).
于是對任意成立等價于對任意成立.  (1分)

①當時,
此時上單調遞增.  故,符合題意.(3分)
②當時,
變化時的變化情況如下表:                 (4分)










單調遞減
極小值
單調遞增
由此可得,在上,
依題意,,又
綜合①,②得,實數(shù)的取值范圍是.               (7分)
(Ⅱ),

,
(1

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)的圖像過坐標原點,且在點處的切線的斜率是
(1)求實數(shù)的值;
(2)求在區(qū)間上的最大值;
(3)對任意給定的正實數(shù),曲線上是否存在兩點,使得是以為直角頂點的直角三角形,且此三角形斜邊的中點在軸上?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù)
(Ⅰ)當時,求的單調區(qū)間;
(Ⅱ)若當時,恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).
(1)當時,的圖象在點處的切線平行于直線,求的值;
(2)當時,在點處有極值,為坐標原點,若三點共線,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(Ⅰ)若上是增函數(shù),求實數(shù)a的取值范圍;
(Ⅱ)證明:當a≥1時,證明不等式≤x+1對x∈R恒成立;
(Ⅲ)對于在(0,1)中的任一個常數(shù)a,試探究是否存在x0>0,使得>x0+1成立?如果存在,請求出符合條件的一個x0;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

甲、乙兩地相距1000,貨車從甲地勻速行駛到乙地,速度不得超過80,已知貨車每小時的運輸成本(單位:元)由可變成本和固定成本組成,可變成本是速度平方的倍,固定成本為a元.
(1)將全程運輸成本y(元)表示為速度v()的函數(shù),并指出這個函數(shù)的定義域;
(2)為了使全程運輸成本最小,貨車應以多大的速度行駛?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),其中是自然對數(shù)的底數(shù),.
(Ⅰ)求函數(shù)的單調區(qū)間;
(Ⅱ)當時,試確定函數(shù)的零點個數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),其中.
(Ⅰ)若,求的值,并求此時曲線在點處的切線方程;
(Ⅱ)求函數(shù)在區(qū)間上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)設(其中的導函數(shù)),求的最大值;
(2)求證: 當時,有;
(3)設,當時,不等式恒成立,求的最大值.

查看答案和解析>>

同步練習冊答案