如圖,橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,分別是橢圓的左、右焦點(diǎn),是橢圓短軸的一個(gè)端點(diǎn),過的直線與橢圓交于兩點(diǎn),的面積為的周長(zhǎng)為

(1)求橢圓的方程;

(2)設(shè)點(diǎn)的坐標(biāo)為,是否存在橢圓上的點(diǎn)及以為圓心的一個(gè)圓,使得該圓與直線都相切,如存在,求出點(diǎn)坐標(biāo)及圓的方程,如不存在,請(qǐng)說明理由.

 

 

 

【答案】

(Ⅰ) 由題意知:,解得

∴ 橢圓的方程為                                      ………  6分

(Ⅱ)假設(shè)存在橢圓上的一點(diǎn),使得直線與以為圓心的圓相切,則 到直線的距離相等,

:      

:                                 ………  8分

                    ………  9分

化簡(jiǎn)整理得:                         ………  10分

∵ 點(diǎn)在橢圓上,∴

解得:(舍)                                  …… 14分

時(shí),, [來源:]

∴ 橢圓上存在點(diǎn),其坐標(biāo)為,使得直線與以為圓心的圓相切                                      ………  16分

 

 

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,橢圓的中心在原點(diǎn),F(xiàn)為橢圓的左焦點(diǎn),B為橢圓的一個(gè)頂點(diǎn),過點(diǎn)B作與FB垂直的直線BP交x軸于P點(diǎn),且橢圓的長(zhǎng)半軸長(zhǎng)a和短半軸長(zhǎng)b是關(guān)于x的方程3x2-3
3
cx+2c2=0
(其中c為半焦距)的兩個(gè)根.
(I)求橢圓的離心率;
(Ⅱ)經(jīng)過F、B、P三點(diǎn)的圓與直線x+
3
y-
3
=0
相切,試求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,橢圓的中心在原點(diǎn),其左焦點(diǎn)與拋物線的焦點(diǎn)重合,過的直線與橢圓交于AB兩點(diǎn),與拋物線交于CD兩點(diǎn).當(dāng)直線x軸垂直時(shí),

(Ⅰ)求橢圓的方程;

(II)求過點(diǎn)O、,并且與橢圓的左準(zhǔn)線相切的圓的方程;

(Ⅲ)求的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,橢圓的中心在原點(diǎn),長(zhǎng)軸AA1在x軸上.以A、A1為焦點(diǎn)的雙曲線交橢圓于C、D、D1、C1四點(diǎn),且|CD|=|AA1|.橢圓的一條弦AC交雙曲線于E,設(shè),當(dāng)時(shí),求雙曲線的離心率e的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江蘇省南京市白下區(qū)高三二模數(shù)學(xué)試卷 題型:解答題

(本小題滿分15分)

如圖,橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,分別是橢圓的左、右焦點(diǎn),是橢圓短軸的一個(gè)端點(diǎn),過的直線與橢圓交于兩點(diǎn),的面積為的周長(zhǎng)為

(1)求橢圓的方程;

(2)設(shè)點(diǎn)的坐標(biāo)為,是否存在橢圓上的點(diǎn)及以為圓心的一個(gè)圓,使得該圓與直線都相切,如存在,求出點(diǎn)坐標(biāo)及圓的方程,如不存在,請(qǐng)說明理由.

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案