(1)下面圖形由單位正方形組成,請觀察圖1至圖4的規(guī)律,并依此規(guī)律,在橫線上方處畫出下一個適當(dāng)?shù)膱D形;
(2)圖中的三角形稱為希爾賓斯基三角形,在如圖所示的四個三角形中,著色三角形的個數(shù)依次構(gòu)成數(shù)列的前四項,依此著色方案繼續(xù)對三角形著色,求著色三角形的個數(shù)的通項公式bn
(3)依照(1)中規(guī)律,繼續(xù)用單位正方形繪圖,記每個圖形中單位正方形的個數(shù)為
an(n=1,2,3,…),設(shè),求數(shù)列{cn}的前n項和Sn
解:(1)在第一個圖形中,只有一層,一個小正方形;
在第二個圖形中,有兩層,從上至下分別為1個、2個小正方形;
在第三個圖形中,有三層,從上至下分別為1個、2個、3個小正方形;
由此歸納:第四個圖形中,有四層,從上至下分別為1個、2個、3個、4個小正方形.
因此答案如右圖所示:
(2)由圖形從左向右數(shù)著色的三角形的個數(shù),發(fā)現(xiàn)后一個圖形中的著色三角形個數(shù)是前一個的3倍,所以,所以{bn}構(gòu)成以1為首項,公比為3的等比數(shù)列,由此不難得到{bn}的通項公式,
∴由等比數(shù)列的通項公式,可得著色三角形的個數(shù)的通項公式為:
(3)由題意,可得an=1+2+3+4+…+n=,

所以 .①
所以 .②
①﹣②得
所以﹣2Sn=.即,其中n∈N+
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•北京模擬)(1)下面圖形由單位正方形組成,請觀察圖1至圖4的規(guī)律,并依此規(guī)律,在橫線上方處畫出下一個適當(dāng)?shù)膱D形;

(2)圖中的三角形稱為希爾賓斯基三角形,在如圖所示的四個三角形中,著色三角形的個數(shù)依次構(gòu)成數(shù)列的前四項,依此著色方案繼續(xù)對三角形著色,求著色三角形的個數(shù)的通項公式bn

(3)依照(1)中規(guī)律,繼續(xù)用單位正方形繪圖,記每個圖形中單位正方形的個數(shù)為an(n=1,2,3,…),設(shè)cn=
2anbnn+1
,求數(shù)列{cn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(1)下面圖形由單位正方形組成,請觀察圖1至圖4的規(guī)律,并依此規(guī)律,在橫線上方處畫出下一個適當(dāng)?shù)膱D形;

(2)圖中的三角形稱為希爾賓斯基三角形,在如圖所示的四個三角形中,著色三角形的個數(shù)依次構(gòu)成數(shù)列的前四項,依此著色方案繼續(xù)對三角形著色,求著色三角形的個數(shù)的通項公式bn

(3)依照(1)中規(guī)律,繼續(xù)用單位正方形繪圖,記每個圖形中單位正方形的個數(shù)為an(n=1,2,3,…),設(shè)數(shù)學(xué)公式,求數(shù)列{cn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年陜西省延安市延長中學(xué)高三(上)第二次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

(1)下面圖形由單位正方形組成,請觀察圖1至圖4的規(guī)律,并依此規(guī)律,在橫線上方處畫出下一個適當(dāng)?shù)膱D形;

(2)圖中的三角形稱為希爾賓斯基三角形,在如圖所示的四個三角形中,著色三角形的個數(shù)依次構(gòu)成數(shù)列的前四項,依此著色方案繼續(xù)對三角形著色,求著色三角形的個數(shù)的通項公式bn

(3)依照(1)中規(guī)律,繼續(xù)用單位正方形繪圖,記每個圖形中單位正方形的個數(shù)為an(n=1,2,3,…),設(shè),求數(shù)列{cn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年北京市會考說明:題目示例(解析版) 題型:解答題

(1)下面圖形由單位正方形組成,請觀察圖1至圖4的規(guī)律,并依此規(guī)律,在橫線上方處畫出下一個適當(dāng)?shù)膱D形;

(2)圖中的三角形稱為希爾賓斯基三角形,在如圖所示的四個三角形中,著色三角形的個數(shù)依次構(gòu)成數(shù)列的前四項,依此著色方案繼續(xù)對三角形著色,求著色三角形的個數(shù)的通項公式bn

(3)依照(1)中規(guī)律,繼續(xù)用單位正方形繪圖,記每個圖形中單位正方形的個數(shù)為an(n=1,2,3,…),設(shè),求數(shù)列{cn}的前n項和Sn

查看答案和解析>>

同步練習(xí)冊答案