16.已知實(shí)數(shù)a>1,命題p:函數(shù)y=ln(x2+2x+a)的定義域?yàn)镽,命題q:|x|<1是x<1的必要不充分條件,則( 。
A.“p或q”為假命題B.“p且¬q”為假命題
C.“p且q”為假命題D.“¬p或¬q”為假命題

分析 先判斷出命題p,q的真假,然后根據(jù)連接詞∧,∨,¬所構(gòu)成的復(fù)合命題和原命題p或q真假的關(guān)系,判斷每個(gè)選項(xiàng)下的命題的真假.

解答 解:∵命題p,實(shí)數(shù)a>1,△=4-4a<0,即x2+2x+a>0恒成立,
故函數(shù)y=ln(x2+2x+a)的定義域?yàn)镽,
∴p為真命題,¬p為假命題,
∵命題q:|x|<1,解得-1<x<1,即|x|<1是x<a的充分不必要條件,
∴q為假命題,¬q為真命題,
根據(jù)復(fù)合命題的真假關(guān)系可得,“p且q”為假命題
故選:C.

點(diǎn)評 本題主要考查了復(fù)合命題的真假關(guān)系的應(yīng)用,解題的關(guān)鍵是準(zhǔn)確判斷P,q的真假,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)y=logax在x∈[2,+∞)上恒有|y|>1,則a的范圍是( 。
A.$\frac{1}{2}$<a<2且a≠1B.0<a<$\frac{1}{2}$或1<a<2C.1<a<2D.a>2或0<a<$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.函數(shù)f(x)=2sin(4x+$\frac{π}{4}$)的圖象(  )
A.關(guān)于原點(diǎn)對稱B.關(guān)于點(diǎn)(-$\frac{π}{16}$,0)對稱
C.關(guān)于y軸對稱D.關(guān)于直線x=$-\frac{π}{16}$對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知集合$A=\left\{{x|{{log}_{\frac{1}{3}}}(x-1)>0}\right\},a={2^{0.3}}$,則下列關(guān)系正確的是( 。
A.A∩a=∅B.a⊆AC.a∉AD.a∈A

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知tanα=$\frac{1}{2}$,π<α<$\frac{3π}{2}$,則cosα-sinα=(  )
A.-$\frac{\sqrt{5}}{5}$B.$\frac{\sqrt{5}}{5}$C.$\frac{3\sqrt{5}}{5}$D.-$\frac{3\sqrt{5}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.下列有關(guān)命題的說法中,正確的是( 。
A.?x0∈R,使得${3^{x_0}}≤0$
B.?x∈R+,lgx>0
C.“$x=\frac{π}{6}$”是“$cosx=\frac{{\sqrt{3}}}{2}$”的必要不充分條件
D.“x=1”是“x≥1”的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知a=2,則按如圖的程序運(yùn)行后輸出的結(jié)果是4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知圓O:x2+y2=4,直線l與圓O相交于點(diǎn)P、Q,且$\overrightarrow{OP}•\overrightarrow{OQ}=-2$,則弦PQ的長度為$2\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知f(x)=$\left\{\begin{array}{l}{-{x}^{2}+4x,(x≤0)}\\{ln(x+1),)(x>0)}\end{array}\right.$,若|f(x)|≥ax-1恒成立,則a的取值范圍是[-6,0].

查看答案和解析>>

同步練習(xí)冊答案