4.某三棱錐的三視圖如圖所示,則該三棱錐的四個(gè)面中,面積最大的面的面積是(  )
A.$4\sqrt{3}$B.$2\sqrt{3}$C.$\frac{{4\sqrt{3}}}{3}$D.$\frac{{2\sqrt{3}}}{3}$

分析 根據(jù)幾何體的三視圖知該幾何體是三棱錐,由三視圖求出幾何體的棱長(zhǎng)、并判斷出線面的位置關(guān)系,由勾股定理、余弦定理、三角形的面積公式求出各個(gè)面的面積,即可得幾何體的各面中面積最大的面的面積.

解答 解:根據(jù)幾何體的三視圖知,該幾何體是三棱錐P-ABC,
直觀圖如圖所示:由圖得,PA⊥平面ABC,
${S_{△ABC}}=\frac{1}{2}×2×2×sin{120^0}=\frac{1}{2}×2×2×\frac{{\sqrt{3}}}{2}=\sqrt{3}$,${S_{△PAB}}=\frac{1}{2}×2×2=2$,$PB=2\sqrt{2}$,$AC=2\sqrt{3}$,
則${S_{△PAC}}=\frac{1}{2}×2×2\sqrt{3}=2\sqrt{3}$,
在△PBC中,$PC=\sqrt{P{A^2}+A{C^2}}=\sqrt{{2^2}+{{(2\sqrt{3})}^2}}=4$,
由余弦定理得:$cos∠PBC=\frac{{{2^2}+{{(2\sqrt{2})}^2}-{4^2}}}{{2×2×2\sqrt{2}}}=-\frac{{\sqrt{2}}}{4}$,
則$sin∠PBC=\frac{{\sqrt{14}}}{4}$,所以${S_{△PAC}}=\frac{1}{2}×2×2\sqrt{2}×\frac{{\sqrt{14}}}{4}=\sqrt{7}$,
所以三棱錐中,面積最大的面是△PAC,其面積為$2\sqrt{3}$,
故選B.

點(diǎn)評(píng) 本題考查由三視圖求幾何體的表面積,勾股定理、余弦定理、三角形的面積公式的應(yīng)用,由三視圖正確復(fù)原幾何體是解題的關(guān)鍵,考查空間想象能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知函數(shù)f(x)=sinx-2cosx,當(dāng)x=α?xí)rf(x)取得最大值,則cosα=-$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.設(shè)i是虛數(shù)單位,若復(fù)數(shù)a+$\frac{15}{3-4i}$(a∈R)是純虛數(shù),則a的值為$-\frac{9}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.高為4的直三棱柱被削去一部分后得到一個(gè)幾何體,它的直觀圖和三視圖中的側(cè)視圖、俯視圖如圖所示,則截面所在平面與底面所在平面所成的銳二面角的正切值為(  )
A.2B.$\sqrt{2}$C.$\frac{1}{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.如圖是一個(gè)多面體三視圖,它們都是斜邊長(zhǎng)為$\sqrt{2}$的等腰Rt△,則這個(gè)多面體最長(zhǎng)一條棱長(zhǎng)為(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$2\sqrt{3}$D.$3\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知無(wú)窮數(shù)列{an}滿(mǎn)足(an+1+an)(an+1-an-4)=0,寫(xiě)出一個(gè)既不是等差數(shù)列也不是等比數(shù)列{an}的前6項(xiàng)為1,-1,3,-3,1,-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.若向量$\overrightarrow{a}$,$\overrightarrow$滿(mǎn)足|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2,|$\overrightarrow{a}$-$\overrightarrow$|=$\sqrt{3}$,則|3$\overrightarrow{a}$-2$\overrightarrow$|的值是$\sqrt{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知全集I={1,2,3,4,5,6},集合A={2,3,5,6},B={1,3},則(∁IA)∩B等于( 。
A.{1,3,4}B.{1,3}C.{1}D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.明代程大位所著《算法統(tǒng)宗》中記載“遠(yuǎn)看巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈三百八十一,請(qǐng)問(wèn)尖頭幾盞燈?”這首古詩(shī)描述寶塔一共有七層,每層懸掛的紅燈數(shù)是上一層的2倍,總共有燈381盞,為這個(gè)塔頂層有幾盞燈?( 。
A.2盞B.3盞C.4盞D.5盞

查看答案和解析>>

同步練習(xí)冊(cè)答案