6.如圖,PA是圓的切線,A是切點(diǎn),M是PA的中點(diǎn),過(guò)點(diǎn)M作圓的割線交圓于點(diǎn)C,B,連接PB,PC分別交圓于點(diǎn)E,F(xiàn),EF與BC的交點(diǎn)為N.
求證:
(Ⅰ)EF∥PA;
(Ⅱ)MA•NE=MC•NB.

分析 (Ⅰ)運(yùn)用切割線定理和相似三角形的判定,可得△PMC∽△BMP,再由相似三角形的性質(zhì)和兩直線平行的判定定理,即可得證;
(Ⅱ)由兩直線平行的性質(zhì)定理和對(duì)應(yīng)角相等,可得△PMC∽△BNE,再由對(duì)應(yīng)邊成比例,即可得證.

解答 證明:(Ⅰ)由切割線定理,得MA2=MC•MB,
而MA=PM,
∴PM2=MC•MB
即$\frac{PM}{MB}=\frac{MC}{PM}$,且∠PMC=∠BMP,
∴△PMC∽△BMP,
∴∠MPC=∠MBP,而∠MBP=∠PFE,
∴∠MPC=∠PFE,∴EF∥PA;
(Ⅱ)∵PM∥EN,∴∠PMC=∠BNE,
又∵∠MPC=∠NBE
∴△PMC∽△BNE,
∴$\frac{PM}{MC}=\frac{NB}{NE}$,而MA=PM,
∴$\frac{MA}{MC}=\frac{NB}{NE}$,
即MA•NE=MC•NB.

點(diǎn)評(píng) 本題考查圓的切割線定理、相似三角形的判定和性質(zhì)的運(yùn)用,考查推理能力和運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.不定方程x+y+z=12的非負(fù)整數(shù)解的個(gè)數(shù)為91.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.設(shè)f(x)=$\left\{\begin{array}{l}\begin{array}{l}{x+\frac{1}{x},}{x>0}\end{array}\\ \begin{array}{l}{x{,_{\;}}}{\;}{x<0}\end{array}\end{array}$,若關(guān)于x的方程[f(x)]2-(a+3)f(x)+a=0恰有3個(gè)不同的實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是(-2,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,平行四邊形ABEF與梯形ABCD所在的平面互相垂直,且AD∥BC,AD⊥AB,AB=BC=$\frac{1}{2}$AD,∠ABE=$\frac{π}{4}$,直線CE與平面ABEF所成角的正切值為$\sqrt{2}$.
(1)證明:AF⊥DE;
(2)求二面角D-AE-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.如圖,四棱錐P-ABCD中,底面ABCD為矩形,AB=2AD,平面PDA⊥平面ABCD,平面PDC⊥平面ABCD.
(1)求證:PD⊥BD;
(2)若PD=AD,求二面角A-PB-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.在直角坐標(biāo)系xOy中,圓C1的參數(shù)方程為$\left\{\begin{array}{l}{x=\sqrt{3}+\sqrt{3}cos{φ}_{1}}\\{y=\sqrt{3}sin{φ}_{1}}\end{array}\right.$(φ1是參數(shù)),圓C2的參數(shù)方程為$\left\{\begin{array}{l}{x=cos{φ}_{2}}\\{y=1+sin{φ}_{2}}\end{array}\right.$(φ2是參數(shù)),以O(shè)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.
(I)求圓C1,圓C2的極坐標(biāo)方程;
(Ⅱ)射線θ=α( 0≤α<2π)同時(shí)與圓C1交于O,M兩點(diǎn),與圓C2交于O,N兩點(diǎn),求|OM|+|ON|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖,△ABC的外接圓的切線AE與BC的延長(zhǎng)線相交于點(diǎn)E,∠BAC的平分線與BC相交于點(diǎn)D,AE=2BD=2.
(1)求證:EA=ED;
(2)求DC•BE的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知f(x)=$\sqrt{3}$cos2x+$\frac{1}{2}$sin2x.
(1)求f(x)最小正周期;
(2)求f(x)最大值;
(3)求f(x)單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知函數(shù)f(x)=x3+bx2+cx+d的圖象如圖,則函數(shù)y=f′(x)的單調(diào)減區(qū)間為( 。
A.[0,3)B.[-2,3]C.(-∞,$\frac{1}{2}$)D.(-∞,-2)

查看答案和解析>>

同步練習(xí)冊(cè)答案