已知函數(shù)f(x)=ex-mx,
(1)當m=1時,求函數(shù)f(x)的最小值:
(2)若函數(shù)g(x)=f(x)-lnx+x2存在兩個零點,求m的取值范圍.

解:(1)當m=1時,f(x)=ex-x,
∴f′(x)=ex-1,
當x<0時,f′(x)<0,
當x>0時,f′(x)>0,
∴f(x)min=f(x)=1.
(2)由g(x)=f(x)-lnx+x2=0,
得m=,
,
,
觀察得x=1時,h′(x)=0.
當x>1時,h′(x)>0,
當0<x<1時,h′(x)<0,
∴h(x)min=h(1)=e+1,
∴函數(shù)g(x)=f(x)-lnx+x2存在兩個零點時m的取值范圍是(e+1,+∞).
分析:(1)當m=1時,f′(x)=ex-1,當x<0時,f′(x)<0,當x>0時,f′(x)>0,由此能求出當m=1時,函數(shù)f(x)的最小值.
(2)由g(x)=f(x)-lnx+x2=0,得m=,令,由此能求出函數(shù)g(x)=f(x)-lnx+x2存在兩個零點時m的取值范圍.
點評:本題考查函數(shù)最小值的求法和函數(shù)存在兩個零點時求m的兩個取值范圍.解題時要認真審題,仔細解答,注意導數(shù)的應用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=e-x(cosx+sinx),將滿足f′(x)=0的所有正數(shù)x從小到大排成數(shù)列{xn}.求證:數(shù)列{f(xn)}為等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•西城區(qū)二模)已知函數(shù)f(x)=e|x|+|x|.若關于x的方程f(x)=k有兩個不同的實根,則實數(shù)k的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•菏澤一模)已知函數(shù)f(x)=e|lnx|-|x-
1
x
|,則函數(shù)y=f(x+1)的大致圖象為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=e-xsinx(其中e=2.718…).
(Ⅰ)求f(x)的單調區(qū)間;
(Ⅱ)求f(x)在[-π,+∞)上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=e-x(x2+x+1).
(Ⅰ)求函數(shù)f(x)的單調遞減區(qū)間;
(Ⅱ)求函數(shù)f(x)在[-1,1]上的最值.

查看答案和解析>>

同步練習冊答案