求經(jīng)過點A(4,-1),并且與圓相切于點M(1,2)的圓的方程.

 

【答案】

設所求圓的方程為.

由題意得,圓的圓心為C(-1,3),AM的中垂線方程為,

直線MC的方程為:

所以所求圓的方程為

【解析】略

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=m•log2x+t的圖象經(jīng)過點A(4,1)、點B(16,3)及點C(Sn,n),其中Sn為數(shù)列{an}的前n項和,n∈N*
(1)求Sn和an
(2)設數(shù)列{bn}的前n項和為Tn,bn=f(an)-1,不等式Tn≤bn的解集,n∈N*

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(文)已知函數(shù)f(x)=b•ax(其中a,b為常數(shù)且a>0,a≠1)的反函數(shù)的圖象經(jīng)過點A(4,1)和B(16,3).
(1)求a,b的值;
(2)若不等式(
1a
2x+b1-x-|m-1|≥0在x∈(-∞,1]上恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

直線x+
3
y
-2=0與圓x2+y2=4相交于C1的圓心為(3,0),且經(jīng)過點A(4,1).
(1)求圓C1的方程;
(2)若圓C2與圓C1關于直線l對稱,點B、D分別為圓C1、C2上任意一點,求|BD|的最小值;
(3)已知直線l上一點M在第一象限,兩質點P、Q同時從原點出發(fā),點P以每秒1個單位的速度沿x軸正方向運動,點Q以每秒2
2
個單位沿射線OM方向運動,設運動時間為t秒.問:當t為何值時直線PQ與圓C1相切?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓心為C的圓經(jīng)過點A(4,1)和B(0,-3),且圓心C在直線l:2x-y-5=0上.
(Ⅰ)求圓C的標準方程;
(Ⅱ)若過點P(4,-8)直線l與圓C交點M、N兩點,且|MN|=4,求直線l的方程.

查看答案和解析>>

同步練習冊答案