【題目】小明在10場籃球比賽中的投籃情況統(tǒng)計如下(假設(shè)各場比賽相互獨立):

場次

投籃次數(shù)

命中次數(shù)

主場1

22

12

主場2

15

12

主場3

12

8

主場4

23

8

主場5

24

20

場次

投籃次數(shù)

命中次數(shù)

客場1

18

8

客場2

13

12

客場3

21

7

客場4

18

15

客場5

25

12

1)從上述比賽中隨機選擇一場,求小明在該場比賽中投籃命中率超過0.6的概率;

2)從上述比賽中隨機選擇一個主場和一個客場,求小明的投籃命中率一場超過0.6,一場不超過0.6的概率.

【答案】(1)0.5(2)

【解析】

(1)根據(jù)圖表直接判斷即可.

(2)根據(jù)獨立事件概率的公式求解即可.

解:(1)根據(jù)投籃統(tǒng)計數(shù)據(jù),在10場比賽中,小明投籃命中率超過0.6的場次有5場,分別是主場2,主場3,主場5,客場2,客場4.所以在隨機選擇的一場比賽中,小明的投籃命中率超過0.6的概率是0.5.

2)記事件A為“在隨機選擇的一場主場比賽中小明的投籃命中率超過0.6”,事件B為“在隨機選擇的一場客場比賽中小明的投籃命中率超過0.6”,事件C為“在隨機選擇的一個主場和一個客場中,小明的投籃命中率一場超過0.6,一場不超過0.6

,A,B獨立.

根據(jù)投籃統(tǒng)計數(shù)據(jù),

.

所以,在隨機選擇的一個主場和一個客場中,小明的投籃命中率一場超過0.6,一場不超過0.6的概率為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線的焦點在軸上,虛軸長為4,且與雙曲線有相同漸近線.

1)求雙曲線的方程.

2)過點的直線與雙曲線的異支相交于兩點,若,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx是定義在(﹣11)上的奇函數(shù),且f

)求實數(shù)mn的值,并用定義證明fx)在(﹣1,1)上是增函數(shù);

)設(shè)函數(shù)gx)是定義在(﹣1,1)上的偶函數(shù),當(dāng)x[0,1)時,gx)=fx),求函數(shù)gx)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為.

(1)寫出直線的普通方程及曲線的直角坐標(biāo)方程;

(2)已知點,點,直線過點且與曲線相交于兩點,設(shè)線段的中點為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,,,,為棱上一點(不包括端點),且滿足.

1)求證:平面平面

2的中點,求二面角的余弦值的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年,隨著中國第一款5G手機投入市場,5G技術(shù)已經(jīng)進入高速發(fā)展階段.已知某5G手機生產(chǎn)廠家通過數(shù)據(jù)分析,得到如下規(guī)律:每生產(chǎn)手機萬臺,其總成本為,其中固定成本為800萬元,并且每生產(chǎn)1萬臺的生產(chǎn)成本為1000萬元(總成本=固定成本+生產(chǎn)成本),銷售收入萬元滿足

1)將利潤表示為產(chǎn)量萬臺的函數(shù);

2)當(dāng)產(chǎn)量為何值時,公司所獲利潤最大?最大利潤為多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某險種的基本保費為a(單位:元),繼續(xù)購買該險種的投保人稱為續(xù)保人,續(xù)保人本年度的保費與其上年度出險次數(shù)的關(guān)聯(lián)如下:

上年度出險次數(shù)

0

1

2

3

4

≥5

保費

0.85a

a

1.25a

1.5a

1.75a

2a

隨機調(diào)查了該險種的200名續(xù)保人在一年內(nèi)的出險情況,得到如下統(tǒng)計表:

出險次數(shù)

0

1

2

3

4

≥5

頻數(shù)

60

50

30

30

20

10

(1)記A為事件:“一續(xù)保人本年度的保費不高于基本保費”,求P(A)的估計值;

(2)記B為事件:“一續(xù)保人本年度的保費高于基本保費但不高于基本保費的160%”,求P(B)的估計值;

(3)求續(xù)保人本年度平均保費的估計值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下面幾種推理是合情推理的是(

(1)由圓的性質(zhì)類比出球的性質(zhì)

(2)由求出,猜測出

(3)M,N是平面內(nèi)兩定點,動點滿足,得點的軌跡是橢圓。

(4)由三角形的內(nèi)角和是,四邊形內(nèi)角和是,五邊形的內(nèi)角和是,由此得凸多邊形的內(nèi)角和是

結(jié)論正確的是( )

A. (1)(2)B. (2)(3)C. (1)(2)(4)D. (1)(2)(3)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】太極圖是由黑白兩個魚形紋組成的圖案,俗稱陰陽魚,太極圖展現(xiàn)了一種相互轉(zhuǎn)化,相對統(tǒng)一的和諧美,定義:能夠?qū)A的周長和面積同時等分成兩個部分的函數(shù)稱為圓的一個太極函數(shù),則下列有關(guān)說法中:

①對于圓的所有非常數(shù)函數(shù)的太極函數(shù)中,都不能為偶函數(shù);

②函數(shù)是圓的一個太極函數(shù);

③直線所對應(yīng)的函數(shù)一定是圓的太極函數(shù);

④若函數(shù)是圓的太極函數(shù),則

所有正確的是__________

查看答案和解析>>

同步練習(xí)冊答案