15.設集合M={a,b,c,d},N={p|p⊆M},則集合N的元素個數(shù)為(  )
A.4個B.8個C.16個D.32個

分析 由已知可得N中元素均是集合M的子集,結合集合M中元素個數(shù),代入子集個數(shù)公式,可得答案.

解答 解:∵N={P|P⊆M},
故N中元素均是集合M的子集,
又∵集合M={a,b,c,d}有4個元素,
故有24=16個子集,
故集合N的元素個數(shù)最多為16,
故選:C.

點評 本題考查的知識點是子集與真子集,熟練掌握n元集合子集個數(shù)為2n個,是解答的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

5.已知某商場新進6000袋奶粉,為檢查其三聚氰胺是否超標,現(xiàn)采用系統(tǒng)抽樣的方法從中抽取150袋檢查,若第一組抽出的號碼是11,則第六十一組抽出的號碼為2411.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.在△ABC中,角A,B,C所對的邊分別為a,b,c,且a=8,A=60°,若S△ABC=$\frac{{15\sqrt{3}}}{4}$,則△ABC的周長等于8+$\sqrt{109}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.某籃球運動員投籃的命中率為0.7,現(xiàn)投了4次球,求下列事件的概率:
(1)恰有2次投中;
(2)至少有2次投中;
(3)至多有2次投中.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知△ABC中,$\overrightarrow{CP}$=$\frac{1}{2}$($\overrightarrow{CA}$+$\overrightarrow{CB}$),|$\overrightarrow{CP}$|=$\frac{1}{2}$|$\overrightarrow{AB}$|=1,點Q是邊AB(含端點)上一點且$\overrightarrow{CQ}$•$\overrightarrow{CP}$=$\frac{1}{2}$,則|$\overrightarrow{CQ}$|的取值范圍是[$\frac{1}{2}$,1].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.幾何體三視圖如圖,其中俯視圖為正三角形,正(主)視圖與側(左)視圖為矩形,則這個幾何體的體積為( 。
A.12$\sqrt{3}$B.36$\sqrt{3}$C.27$\sqrt{3}$D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.設x,y滿足約束條件$\left\{\begin{array}{l}3x-y-6≤0\\ x-y+2≥0\\ x≥0,y≥0\end{array}\right.$,若目標函數(shù)z=ax+by(a>0,b>0)的最大值為8,則$\frac{1}{a}$+$\frac{6}$的最小值為$\frac{16}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知含有三個元素的集合{a,$\frac{a}$,1}={a2,a+b,0},則a2016+b2017=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.正三棱錐S-ABC的外接球半徑為2,底面邊長AB=3,則此棱錐的體積為(  )
A.$\frac{{9\sqrt{3}}}{4}$B.$\frac{{9\sqrt{3}}}{4}$或$\frac{{3\sqrt{3}}}{4}$C.$\frac{{27\sqrt{3}}}{4}$D.$\frac{{27\sqrt{3}}}{4}$或$\frac{{\sqrt{3}}}{4}$

查看答案和解析>>

同步練習冊答案