【題目】已知函數(shù)滿足,且當(dāng)時(shí),成立,若,,則a,b,c的大小關(guān)系是()

A. aB. C. D. c

【答案】C

【解析】

根據(jù)題意,構(gòu)造函數(shù)hx)=xfx),則ah20.6),bhln2),c=(f)=h(﹣3),分析可得hx)為奇函數(shù)且在(﹣∞,0)上為減函數(shù),進(jìn)而分析可得hx)在(0,+∞)上為減函數(shù),分析有0ln2120.6,結(jié)合函數(shù)的單調(diào)性分析可得答案.

解:根據(jù)題意,令hx)=xfx),

h(﹣x)=(﹣xf(﹣x)=﹣xfx)=﹣hx),則hx)為奇函數(shù);

當(dāng)x(﹣∞,0)時(shí),h′(x)=fx+xf'x)<0,則hx)在(﹣∞,0)上為減函數(shù),

又由函數(shù)hx)為奇函數(shù),則hx)在(0,+∞)上為減函數(shù),

所以hx)在R上為減函數(shù),

a=(20.6f20.6)=h20.6),b=(ln2fln2)=hln2),c=(f)=h)=h(﹣3),

因?yàn)?/span>0ln2120.6,

則有;

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校藝術(shù)節(jié)對(duì)同一類的,四項(xiàng)參賽作品,只評(píng)一項(xiàng)一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲、乙、丙、丁四位同學(xué)對(duì)這四項(xiàng)參賽作品預(yù)測(cè)如下:

甲說(shuō):“是作品獲得一等獎(jiǎng)”;

乙說(shuō):“作品獲得一等獎(jiǎng)”;

丙說(shuō):“,兩項(xiàng)作品未獲得一等獎(jiǎng)”;

丁說(shuō):“是作品獲得一等獎(jiǎng)”.

若這四位同學(xué)中只有兩位說(shuō)的話是對(duì)的,則獲得一等獎(jiǎng)的作品是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某村莊擬修建一個(gè)無(wú)蓋的圓柱形蓄水池(不計(jì)厚度).設(shè)該蓄水池的底面半徑為r米,高為h米,體積為V立方米.假設(shè)建造成本僅與表面積有關(guān),側(cè)面積的建造成本為100/平方米,底面的建造成本為160/平方米,該蓄水池的總建造成本為12000π元(π為圓周率).

1)將V表示成r的函數(shù)Vr),并求該函數(shù)的定義域;

2)討論函數(shù)Vr)的單調(diào)性,并確定rh為何值時(shí)該蓄水池的體積最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,梯形ABCD中,ADBC,ADAB1ADAB,∠BCD45°,將ABD沿對(duì)角線BD折起,設(shè)折起后點(diǎn)A的位置為A,使二面角A′—BDC為直二面角,給出下面四個(gè)命題:①ADBC;②三棱錐A′—BCD的體積為;③CD⊥平面ABD;④平面ABC⊥平面ADC.其中正確命題的個(gè)數(shù)是(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司要在一條筆直的道路邊安裝路燈,要求燈柱與地面垂直,燈桿與燈柱所在的平面與道路走向垂直,路燈采用錐形燈罩,射出的光線與平面的部分截面如圖中陰影部分所示.已知,,路寬.設(shè).

1)求燈柱的高(用表示);

2)此公司應(yīng)該如何設(shè)置的值才能使制造路燈燈柱與燈桿所用材料的總長(zhǎng)度最小?最小值為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)列{an}滿足an+1+an=4n3nN*

(1)若{an}是等差數(shù)列,求其通項(xiàng)公式;

(2)若{an}滿足a1=2,Sn{an}的前n項(xiàng)和,求S2n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四棱錐,底面為菱形, ,H為上的點(diǎn),過(guò)的平面分別交于點(diǎn),且平面

(1)證明:

(2)當(dāng)的中點(diǎn), ,與平面所成的角為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】高三某班20名男生在一次體檢中被平均分為兩個(gè)小組,第一組和第二組學(xué)生身高(單位:cm)的統(tǒng)計(jì)數(shù)據(jù)用莖葉圖表示(如圖).

(1)求第一組學(xué)生身高的平均數(shù)和方差;

(2)從身高超過(guò)180cm的五位同學(xué)中隨機(jī)選出兩位同學(xué)參加;@球隊(duì)集訓(xùn),求這兩位同學(xué)在同一小組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校高三年級(jí)50名學(xué)生參加數(shù)學(xué)競(jìng)賽,根據(jù)他們的成績(jī)繪制了如圖所示的頻率分布直方圖,已知分?jǐn)?shù)在的矩形面積為

求:分?jǐn)?shù)在的學(xué)生人數(shù);

這50名學(xué)生成績(jī)的中位數(shù)精確到;

若分?jǐn)?shù)高于60分就能進(jìn)入復(fù)賽,從不能進(jìn)入復(fù)賽的學(xué)生中隨機(jī)抽取兩名,求兩人來(lái)自不同組的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案