8.如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗線畫出的是某幾何體的三視圖,則此幾何體的體積為( 。
A.72B.76C.80D.88

分析 由三視圖可得直觀圖為組合體,下邊為棱長(zhǎng)為4的正方體,體積為64,上邊是底面為正方形,高為3的四棱錐,體積為$\frac{1}{3}×16×3$=16,健康求出此幾何體的體積.

解答 解:由三視圖可得直觀圖為組合體,下邊為棱長(zhǎng)為4的正方體,體積為64,
上邊是底面為正方形,高為3的四棱錐,體積為$\frac{1}{3}×16×3$=16,
∴此幾何體的體積為64+16=80,
故選C.

點(diǎn)評(píng) 本題考查三視圖與幾何體的關(guān)系,考查幾何體的體積的求法,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)命題p:實(shí)數(shù)x滿足x2-6ax-16a2<0(a≠0);命題q:實(shí)數(shù)x滿足$\frac{1}{8}$≤2x≤16,
(1)若a=1時(shí),命題p∨q為真,同時(shí)命題p∧q為假,求實(shí)數(shù)x的取值范圍;
(2)若¬p是¬q的充分不必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.直線x-y=0被圓x2+y2=1截得的弦長(zhǎng)為( 。
A.$\sqrt{2}$B.1C.4D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若函數(shù)f(x)=$\left\{{\begin{array}{l}{{{(\frac{1}{4})}^x},x∈[-2017,0)}\\{{4^x},x∈[0,2017]}\end{array}}$,則f(log23)=9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,四棱柱ABCD-A1B1C1D1的底面ABCD為矩形,平面CDD1C1⊥平面ABCD,E,F(xiàn)分別是CD,AB的中點(diǎn),求證:
(1)AD⊥CD;
(2)EF∥平面ADD1A1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.復(fù)數(shù)(i-1-i)3的虛部為(  )
A.8iB.-8iC.8D.-8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.某高校有正教授120人,副教授100人,講師80人,助教60人,現(xiàn)用分層抽樣的方法從以上所有老師中抽取一個(gè)容量為n的樣本,已知從講師中抽取人數(shù)為16人,那么n=72.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知定義在R上的函數(shù)f(x)滿足f(x+3)-f(x)=0,且f(x)=$\left\{\begin{array}{l}{-{x}^{2}+1,-1≤x≤1}\\{lo{g}_{2}x,1<x<2}\end{array}\right.$,若函數(shù)y=f(x)-$\frac{t}{3}$x(t>0)至少有9個(gè)零點(diǎn),則t的取值范圍為( 。
A.(0,$\frac{1}{3}$)B.(0,54-24$\sqrt{5}$]C.(0,$\frac{1}{2}$)D.(0,$\frac{1}{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖1,ABCD為長(zhǎng)方形,AB=3,AD=$\sqrt{2}$,E,F(xiàn)分別是邊AB,CD上的點(diǎn),且AE=CF=1,DE與AF相交于點(diǎn)G,將三角形ADF沿AF折起至ADF',使得D'E=1,如圖2.
(1)求證:平面D'EG⊥ABCF平面;
(2)求平面D'EG與平面所成銳二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案