(2013•東城區(qū)一模)如圖,已知PA與圓O相切于A,半徑OC⊥OP,AC交PO于B,若OC=1,OP=2,則PA=
3
3
,PB=
3
3
分析:由切割線定理可得PA2=PE•PF,即可得出PA,再根據(jù)圓的切線的性質(zhì)、互余角的關(guān)系及對頂角即可得出∠PAB=∠ABP,從而求出PB.
解答:解:設(shè)OP與⊙O相較于點E,并延長PO交⊙O于點F,由PA與圓O相切于A,
根據(jù)切割線定理可得PA2=PE•PF,∴PA2=(2-1)×(2+1),解得PA=
3

連接OA,則∠PAO=90°,
∵∠OAB+∠PAB=90°,∠OBC+∠OCA=90°,
∠OAC=∠OCB,∠ABP=∠OBC,
∴∠PAB=∠ABP.
∴PB=PA=
3

故答案分別為
3
,
3
點評:熟練掌握切割線定理、圓的切線的性質(zhì)、互余角的關(guān)系及對頂角的性質(zhì)是解題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2013•東城區(qū)一模)設(shè)A是由n個有序?qū)崝?shù)構(gòu)成的一個數(shù)組,記作:A=(a1,a2,…,ai,…,an).其中ai(i=1,2,…,n)稱為數(shù)組A的“元”,S稱為A的下標.如果數(shù)組S中的每個“元”都是來自 數(shù)組A中不同下標的“元”,則稱A=(a1,a2,…,an)為B=(b1,b2,…bn)的子數(shù)組.定義兩個數(shù)組A=(a1,a2,…,an),B=(b1,b2,…,bn)的關(guān)系數(shù)為C(A,B)=a1b1+a2b2+…+anbn
(Ⅰ)若A=(-
1
2
,
1
2
)
,B=(-1,1,2,3),設(shè)S是B的含有兩個“元”的子數(shù)組,求C(A,S)的最大值;
(Ⅱ)若A=(
3
3
,
3
3
,
3
3
)
,B=(0,a,b,c),且a2+b2+c2=1,S為B的含有三個“元”的子數(shù)組,求C(A,S)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•東城區(qū)一模)某游戲規(guī)則如下:隨機地往半徑為1的圓內(nèi)投擲飛標,若飛標到圓心的距離大于
1
2
,則成績?yōu)榧案;若飛標到圓心的距離小于
1
4
,則成績?yōu)閮?yōu)秀;若飛標到圓心的距離大于
1
4
且小于
1
2
,則成績?yōu)榱己,那么在所有投擲到圓內(nèi)的飛標中得到成績?yōu)榱己玫母怕蕿椋ā 。?/div>

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•東城區(qū)一模)函數(shù)f(x)=sin(x-
π
3
)
的圖象為C,有如下結(jié)論:
①圖象C關(guān)于直線x=
6
對稱;
②圖象C關(guān)于點(
3
,0)
對稱;
③函數(shù)f(x)在區(qū)間[
π
3
,
6
]
內(nèi)是增函數(shù),
其中正確的結(jié)論序號是
①②③
①②③
.(寫出所有正確結(jié)論的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•東城區(qū)一模)已知全集U={1,2,3,4},集合A={1,2},那么集合?UA為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•東城區(qū)一模)數(shù)列{an}的各項排成如圖所示的三角形形狀,其中每一行比上一行增加兩項,若an=an(a≠0),則位于第10行的第8列的項等于
a89
a89
,a2013在圖中位于
第45行的第77列
第45行的第77列
.(填第幾行的第幾列)

查看答案和解析>>

同步練習冊答案