設(shè)M為拋物線C:x2=4py(p>0)準(zhǔn)線上的任意一點(diǎn),過點(diǎn)M作曲線C的兩條切線,設(shè)切點(diǎn)為A、B.
(Ⅰ)直線AB是否過定點(diǎn)?如果是,求出該定點(diǎn),如果不是,請(qǐng)說明理由;
(Ⅱ)當(dāng)直線MA,MF,MB的斜率均存在時(shí),求證:直線MA,MF,MB的斜率的倒數(shù)成等差數(shù)列.
考點(diǎn):直線與圓錐曲線的綜合問題
專題:圓錐曲線中的最值與范圍問題
分析:(Ⅰ)設(shè)M(m,-p),兩切點(diǎn)為A(x1,y1),B(x2,y2),由x2=2py,得y=
1
4p
x2
,求導(dǎo)得兩條切線方程為y-y1=
1
2p
x1(x-x1)
,y-y2=
1
2p
x2(x-x2)
,從而求出x1,x2為方程x2-2mx-4p2=0的兩根,由此能求出直線恒過定點(diǎn)(0,p).
(Ⅱ)設(shè)M(m,-p),A(x1,y1),B(x2,y2),x1+x2=2m,x1x2=-4p2,由此能證明直線MA,MF,MB的斜率倒數(shù)成等差數(shù)列.
解答: (Ⅰ)解:設(shè)M(m,-p),兩切點(diǎn)為A(x1,y1),B(x2,y2),
由x2=2py,得y=
1
4p
x2
,求導(dǎo)得y=
1
2p
x

∴兩條切線方程為y-y1=
1
2p
x1(x-x1)
,①
y-y2=
1
2p
x2(x-x2)
,②…2分
對(duì)于方程①,代入點(diǎn)M(m,-p)得,-p-y1=
1
2p
x1(m-x1)
,
y1=
1
4p
x12

∴-p-
1
4p
x12
=
1
2p
x1(m-x1)
,
整理得:x12-2mx1-4p2=0
同理對(duì)方程②有x22-2mx2-4p2=0,
即x1,x2為方程x2-2mx-4p2=0的兩根.
∴x1+x2=2m,x1x2=-4p2,③…4分
設(shè)直線AB的斜率為k,k=
y2-y1
x2-x1
=
x22-x12
4p(x2-x1)
=
1
4p
(x1+x2)
,
∴直線AB的方程為y-
x12
4p
=
1
4p
(x1+x2)(x-x1)
,
展開得:y=
1
4p
(x1+x2)x-
x1x2
4p

代入③得:y=
m
2p
x+p,∴直線恒過定點(diǎn)(0,p).…6分
(Ⅱ)證明:由(Ⅰ)的結(jié)論,設(shè)M(m,-p),A(x1,y1),B(x2,y2),
且有x1+x2=2m,x1x2=-4p2,
kMA=
y1+p
x1-m
kMB=
y2+p
x2-m
,
1
kMA
+
1
kMB
=
x1-m
y1+p
+
x2-m
y2+p

=
x1-m
x12
4p
+p
+
x2-m
x22
4p
+p

=
4p(x1-m)
x12+4p2
+
4p(x2-m)
x22+4p2

=
4p(x1-m)
x12-x1x2
+
4p(x2-m)
x22-x1 x2

=
4p(x1-m)x2-4p(x2-m)x1
x1 x2(x1-x2)

=
4pm
x1x2
=
4pm
-4p2
=-
m
p

又∵
1
kMP
=
m
-p-p
=-
m
2p
,
1
kMA
+
1
kMB
=
2
kMP

即直線MA,MF,MB的斜率倒數(shù)成等差數(shù)列.…13分
點(diǎn)評(píng):本題考查直線是否恒過定點(diǎn)的判斷,考查三條直線的斜率倒數(shù)成等差數(shù)列的證明,考查圓錐曲線切線,直線過定點(diǎn),圓錐曲線計(jì)算能力等,是難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知P(x,y)是不等式組
x+y-1≥0
x-y+3≥0
x≤0
表示的平面區(qū)域內(nèi)的一點(diǎn),A(1,2),O為坐標(biāo)原點(diǎn),則
OA
OP
的最大值( 。
A、2B、3C、5D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線的頂點(diǎn)為(0,0),準(zhǔn)線為x=-2,不垂直于x軸的直線x=ty+1與該拋物線交于A,B兩點(diǎn),圓M以AB為直徑.
(Ⅰ)求拋物線的方程;
(Ⅱ)圓M交x軸的負(fù)半軸于點(diǎn)C,是否存在實(shí)數(shù)t,使得△ABC的內(nèi)切圓的圓心在x軸上?若存在,求出t的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線的方程為y=ax2-1,直線l的方程為y=
x
2
,點(diǎn)A(3,-1)關(guān)于直線l的對(duì)稱點(diǎn)在拋物線上.
(1)求拋物線的方程;
(2)已知P=(
1
2
,1),求過點(diǎn)P及拋物線與x軸兩個(gè)交點(diǎn)的圓的方程;
(3)已知點(diǎn)F(0,-
15
16
)是拋物線的焦點(diǎn),P(
1
2
,1),M是拋物線上的動(dòng)點(diǎn),求|MP|+|MF|的最小值及此時(shí)點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,且a2=8,S4=40.?dāng)?shù)列{bn}的前n項(xiàng)和為Tn,且Tn-2bn+3=0,n∈N*
(Ⅰ)求數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)cn=
an,n為奇數(shù)
bn,n為偶數(shù)
,求數(shù)列{cn}的前n項(xiàng)和Pn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某市規(guī)定,高中學(xué)生三年在校期間參加不少于80小時(shí)的社區(qū)服務(wù)才合格.教育部門在全市隨機(jī)抽取200學(xué)生參加社區(qū)服務(wù)的數(shù)據(jù),按時(shí)間段[75,80),[80,85),[85,90),[90,95),[95,100](單位:小時(shí))進(jìn)行統(tǒng)計(jì),其頻率分布直方圖如圖所示.

(Ⅰ)求抽取的200位學(xué)生中,參加社區(qū)服務(wù)時(shí)間不少于90小時(shí)的學(xué)生人數(shù),并估計(jì)從全市高中學(xué)生中任意選取一人,其參加社區(qū)服務(wù)時(shí)間不少于90小時(shí)的概率;
(Ⅱ)從全市高中學(xué)生(人數(shù)很多)中任意選取3位學(xué)生,記ξ為3位學(xué)生中參加社區(qū)服務(wù)時(shí)間不少于90小時(shí)的人數(shù).試求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
1
2
,以原點(diǎn)為圓心、橢圓的短半軸長(zhǎng)為半徑的圓與直線x-y+2
6
=0相切.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)A(-4,0),過點(diǎn)R(3,0)作與x軸不重合的直線l交橢圓于P,Q兩點(diǎn),連結(jié)AP,AQ分別交直線x=
16
3
于M,N兩點(diǎn),試探究直線MR、NR的斜率之積是否為定值,若為定值,請(qǐng)求出;若不為定值,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在一次招聘考試中,有12道備選題,其中8道A類題,4道B類題,每位考生都要在其中隨機(jī)抽出3道題回答
(Ⅰ)求某考生至少抽到1道B類題的概率;
(Ⅱ)已知所抽出的3道題中有2道A類題,1道B類題,設(shè)該考生答對(duì)每道A類題的概率都是
3
5
,答對(duì)每道B類題的概率都是
4
5
,且各題答對(duì)與否相互獨(dú)立,用X表示該考生答對(duì)題的個(gè)數(shù),求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖放置的邊長(zhǎng)為1的正方形PABC沿x軸滾動(dòng),點(diǎn)B恰好經(jīng)過原點(diǎn).設(shè)頂點(diǎn)P(x,y)的軌跡方程是y=f(x),則對(duì)函數(shù)y=f(x)有下列判斷:
①函數(shù)y=f(x)是偶函數(shù);
②對(duì)任意的x∈R,都有f(x+2)=f(x-2);
③函數(shù)y=f(x)在區(qū)間[2,3]上單調(diào)遞減;
2
0
f(x)dx=
π+1
2

其中判斷正確的序號(hào)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案