(1-
1
x
)(3x+2)5的展開式中的常數(shù)項為( 。
A、210B、-240
C、32D、-208
考點:二項式系數(shù)的性質(zhì)
專題:應(yīng)用題,二項式定理
分析:先求出二項式展開式的通項公式,再令x的冪指數(shù)等于0,1,求得r的值,可得系數(shù),即可求得展開式中的常數(shù)項的值.
解答: 解:(3x+2)5的展開式的通項公式為Tr+1=
C
r
5
•(3x)5-r•2r,
令5-r=0,求得r=5,系數(shù)為32;令5-r=1,求得r=4,系數(shù)為240,
故(1-
1
x
)(3x+2)5的展開式中的常數(shù)項為32-240=-208,
故選:D.
點評:本題主要考查二項式定理的應(yīng)用,二項式系數(shù)的性質(zhì),二項式展開式的通項公式,求展開式中某項的系數(shù),屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知Sn是等差數(shù)列{an}的前n項和,若a1=-23,Sn≥0的最小正整數(shù)解為n=11,則公差d的取值范圍是( 。
A、(
23
10
23
9
]
B、[
23
10
,
23
9
C、(
23
5
,
46
9
]
D、[
23
5
,
46
9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,程序框圖輸出的所有實數(shù)對(x,y)所對應(yīng)的點都在函數(shù)( 。
A、y=x+1的圖象上
B、y=2x的圖象上
C、y=2x的圖象上
D、y=2x-1的圖象上

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知平面區(qū)域D1={(x,y)|
x≥-2
y≤2
x-y≤0
},D2={(x,y)|kx-y+2<0,k>0},在區(qū)域D1內(nèi)隨機選取一點M,若點M恰好在區(qū)域D2內(nèi)的概率為
1
4
,則k的值為(  )
A、0
B、
1
2
C、1
D、2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

關(guān)于x的方程|x+
1
x
|-|x-
1
x
|-kx-1=0有五個互不相等的實數(shù)根,則k的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

有一個邊長為2的正六邊形墻洞,一蜘蛛編制了一個近似為內(nèi)切圓的蛛網(wǎng),蚊子只有蛛網(wǎng)邊緣與洞壁間的間隙處才能飛過,則飛過此洞的蚊子被捕食的概率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

我市某公司為激勵工人進行技術(shù)革新,既保質(zhì)量又提高產(chǎn)值,對小組生產(chǎn)產(chǎn)值超產(chǎn)部分進行獎勵,設(shè)年底時超產(chǎn)產(chǎn)值為x(x>0)萬元,當x不超過35萬元時,獎金為log6(x+1)萬元,當x超過35萬元時,獎金為5%•(x+5)萬元
(1)若某小組年底超產(chǎn)產(chǎn)值為75萬元,則其超產(chǎn)獎金為多少?
(2)寫出獎金y(單位:萬元)關(guān)于超產(chǎn)產(chǎn)值x的函數(shù)關(guān)系式;
(3)某小組想爭取年超產(chǎn)獎金y∈[1,6](單位:萬元),則超產(chǎn)產(chǎn)值x應(yīng)在什么范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義域為(-∞,1)∪(1,+∞)的函數(shù)y=f(x)滿足f(x)=f(2-x),(x-1)f′(x)>0.若x1+x2>2且x1<x2,則( 。
A、f(x1)<f(x2
B、f(x1)>f(x2
C、f(x1)=f(x2
D、f(x1),f(x2)大小不確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

集合A={α|α=
6
,k∈Z},B={β|β=
3
+
π
6
,n∈Z}的關(guān)系是(  )
A、A?BB、A?B
C、A⊆BD、A=B

查看答案和解析>>

同步練習冊答案