【題目】關(guān)于圓周率π,數(shù)學(xué)發(fā)展史上出現(xiàn)過許多很有創(chuàng)意的求法,如著名的蒲豐實驗和查理斯實驗,受其啟發(fā),我們也可以通過設(shè)計下面的實驗來估計π的值,先請240名同學(xué),每人隨機寫下兩個都小于1的正實數(shù)xy組成的實數(shù)對(x,y);若將(x,y)看作一個點,再統(tǒng)計點(x,y)在圓x2+y21外的個數(shù)m;最后再根據(jù)統(tǒng)計數(shù)m來估計π的值,假如統(tǒng)計結(jié)果是m52,那么可以估計π的近似值為_______.(用分?jǐn)?shù)表示)

【答案】

【解析】

由試驗結(jié)果知200之間的均勻隨機數(shù),,對應(yīng)區(qū)域的面積為1,兩個數(shù)對,滿足,都小于1,面積為,由幾何概型概率計算公式即可估計的值.

解:由題意,240對都小于的正實數(shù)對,對應(yīng)區(qū)域的面積為1,

兩個數(shù)能與1構(gòu)成鈍角三角形三邊的數(shù)對,

滿足都小于1,,面積為,

因為點在圓外的個數(shù)

;

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),曲線在點處的切線方程為.

(1)求的解析式;

(2)判斷方程內(nèi)的解的個數(shù),并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過正方體的頂點作平面,使每條棱在平面的正投影的長度都相等,則這樣的平面可以作(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下表是某電器銷售公司2018年度各類電器營業(yè)收入占比和凈利潤占比統(tǒng)計表:

空調(diào)類

冰箱類

小家電類

其它類

營業(yè)收入占比

90.10%

4.98%

3.82%

1.10%

凈利潤占比

95.80%

3.82%

0.86%

則下列判斷中不正確的是(

A.該公司2018年度冰箱類電器銷售虧損

B.該公司2018年度小家電類電器營業(yè)收入和凈利潤相同

C.該公司2018年度凈利潤主要由空調(diào)類電器銷售提供

D.剔除冰箱類銷售數(shù)據(jù)后,該公司2018年度空調(diào)類電器銷售凈利潤占比將會降低

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點為極點,軸的正半軸為極軸,建立極坐標(biāo)系,已知直線的極坐標(biāo)方程為.

1)求曲線的普通方程和直線的直角坐標(biāo)方程;

2)設(shè)為曲線上的一個動點,求點到直線距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如表是我國某城市在2017年1月份至10月份個月最低溫與最高溫()的數(shù)據(jù)一覽表.

月份

1

2

3

4

5

6

7

8

9

10

最高溫

5

9

9

11

17

24

27

30

31

21

最低溫

已知該城市的各月最低溫與最高溫具有相關(guān)關(guān)系,根據(jù)這一覽表,則下列結(jié)論錯誤的是( )

A.最低溫與最高位為正相關(guān)

B.每月最高溫和最低溫的平均值在前8個月逐月增加

C.月溫差(最高溫減最低溫)的最大值出現(xiàn)在1月

D.1月至4月的月溫差(最高溫減最低溫)相對于7月至10月,波動性更大

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國歷法推測遵循以測為輔、以算為主的原則.例如《周髀算經(jīng)》和《易經(jīng)》里對二十四節(jié)氣的晷(guǐ)影長的記錄中,冬至和夏至的晷影長是實測得到的,其它節(jié)氣的晷影長則是按照等差數(shù)列的規(guī)律計算得出的.下表為《周髀算經(jīng)》對二十四節(jié)氣晷影長的記錄,其中寸表示115分(1寸=10分).

節(jié)氣

冬至

小寒

(大雪)

大寒

(小雪)

立春

(立冬)

雨水

(霜降)

驚蟄

(寒露)

春分

(秋分)

清明

(白露)

谷雨

(處暑)

立夏

(立秋)

小滿

(大暑)

芒種

(小暑)

夏至

晷影長

(寸

135

75.5

16.0

已知《易經(jīng)》中記錄某年的冬至晷影長為130.0寸,夏至晷影長為14.8寸,按照上述規(guī)律那么《易經(jīng)》中所記錄的春分的晷影長應(yīng)為( )

A.91.6B.82.0C.81.4D.72.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為θ為參數(shù)),以原點為極點,x軸非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為

1)求曲線C1的極坐標(biāo)方程以及曲線C2的直角坐標(biāo)方程;

2)若直線lykx與曲線C1、曲線C2在第一象限交于P、Q,且|OQ||PQ|,點M的直角坐標(biāo)為(1,0),求△PMQ的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,定義為兩點,切比雪夫距離,又設(shè)點上任意一點,稱的最小值為點到直線切比雪夫距離,記作,給出下列三個命題:

①對任意三點、、,都有;

②已知點和直線,則;

③到定點的距離和到切比雪夫距離相等的點的軌跡是正方形.

其中正確的命題有(

A.0B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊答案