7.函數(shù)y=3sin(-2x-$\frac{π}{6}$)的單調(diào)遞增區(qū)間( 。
A.[kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$](k∈Z)B.[kπ+$\frac{5π}{12}$,kπ+$\frac{11π}{12}$](k∈Z)
C.[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$](k∈Z)D.[kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$](k∈Z)

分析 化簡函數(shù)y,根據(jù)三角函數(shù)的圖象與性質(zhì)即可求出函數(shù)y的單調(diào)遞增區(qū)間.

解答 解:函數(shù)y=3sin(-2x-$\frac{π}{6}$)=-3sin(2x+$\frac{π}{6}$),
令$\frac{π}{2}$+2kπ≤2x+$\frac{π}{6}$≤$\frac{3π}{2}$+2kπ,k∈Z;
解得$\frac{π}{6}$+kπ≤x≤$\frac{2π}{3}$+kπ,k∈Z;
∴函數(shù)y的單調(diào)遞增區(qū)間為:
[kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$],k∈Z.
故選:D.

點評 本題考查了三角函數(shù)的圖象與性質(zhì)的應用問題,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

12.若$P(-2,-\frac{π}{3})$是極坐標系中的一點,則$Q(2,\frac{2π}{3}),R(2,\frac{8π}{3})$,$M(-2,\frac{5π}{3})$$N(2,2kπ-\frac{5π}{3})$(k∈Z)四點中與P重合的點有( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.在一個口袋中裝5個白球和3個黑球,這些球除顏色外完全相同,從中摸出1個球,則摸到黑球的概率是( 。
A.$\frac{5}{8}$B.$\frac{3}{8}$C.$\frac{3}{5}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.設點A(-2,0)和B(0,3),在直線l:x-y+1=0上找一點P,使|PA|+|PB|的取值最小,則這個最小值為$\sqrt{17}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.如圖,在四棱錐P-ABCD中,底面ABCD是邊長為2的正方形,側(cè)面PAD⊥底面ABCD,且PA=PD=$\frac{\sqrt{2}}{2}$AD.
(1)求證:平面PAB⊥平面PDC
(2)在線段AB上是否存在一點G,使得二面角C-PD-G的余弦值為$\frac{1}{3}$.若存在,求$\frac{AG}{AB}$的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知數(shù)列{an}是等差數(shù)列,其前n項和為Sn,a3=$\frac{1}{2}$•S3=6.
(I)求數(shù)列{an}的通項公式;
(Ⅱ)求和:$\frac{1}{{S}_{1}}$+$\frac{1}{{S}_{2}}$+…+$\frac{1}{{S}_{n}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知f(x)=$\left\{\begin{array}{l}{0,x>0}\\{-1,x=0}\\{2x-3,x<0}\end{array}\right.$,則f[f(0)]=-5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.不等式組$\left\{\begin{array}{l}x>m\\ x<4\end{array}\right.$的整數(shù)解有4個,則m的取值范圍是( 。
A.-1≤m<0B.-1<m≤0C.-1≤m≤0D.-1<m<0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.若命題p:{x|log2(x-1)<0}命題 q:{x|x<3},則p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習冊答案