【題目】隨著網(wǎng)絡(luò)的發(fā)展,網(wǎng)上購物越來越受到人們的喜愛,各大購物網(wǎng)站為增加收入,促銷策略越來越多樣化,促銷費用也不斷增加.下表是某購物網(wǎng)站2017年1-8月促銷費用(萬元)和產(chǎn)品銷量(萬件)的具體數(shù)據(jù).
(1)根據(jù)數(shù)據(jù)可知與具有線性相關(guān)關(guān)系,請建立關(guān)于的回歸方程(系數(shù)精確到);
(2)已知6月份該購物網(wǎng)站為慶祝成立1周年,特制定獎勵制度:以(單位:件)表示日銷量, ,則每位員工每日獎勵100元; ,則每位員工每日獎勵150元; ,則每位員工每日獎勵200元.現(xiàn)已知該網(wǎng)站6月份日銷量服從正態(tài)分布,請你計算某位員工當月獎勵金額總數(shù)大約多少元.(當月獎勵金額總數(shù)精確到百分位)
參考數(shù)據(jù): , ,其中, 分別為第個月的促銷費用和產(chǎn)品銷量, .
參考公式:
(1)對于一組數(shù)據(jù), , , ,其回歸方程的斜率和截距的最小二乘估計分別為, .
(2)若隨機變量服從正態(tài)分布,則, .
科目:高中數(shù)學 來源: 題型:
【題目】已知過點A(0,1)且斜率為k的直線l與圓C:(x-2)2+(y-3)2=1交于M,N兩點.
(1)求k的取值范圍;
(2)若=12,其中O為坐標原點,求|MN|.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓和拋物線,圓與拋物線的準線交于、兩點,的面積為,其中是的焦點.
(1)求拋物線的方程;
(2)不過原點的動直線交該拋物線于,兩點,且滿足,設(shè)點為圓上任意一動點,求當動點到直線的距離最大時直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在邊長為2的正方形中,分別為的中點,為的中點,沿將正方形折起,使重合于點,在構(gòu)成的四面體中,下列結(jié)論錯誤的是
A. 平面
B. 直線與平面所成角的正切值為
C. 四面體的內(nèi)切球表面積為
D. 異面直線和所成角的余弦值為
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知集合M={x|x<-3,或x>5},P={x|(x-a)·(x-8)≤0}.
(1)求M∩P={x|5<x≤8}的充要條件;
(2)求實數(shù)a的一個值,使它成為M∩P={x|5<x≤8}的一個充分但不必要條件.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=(2x-4)ex+a(x+2)2(x>0,a∈R,e是自然對數(shù)的底數(shù)).
(1)若f(x)是(0,+∞)上的單調(diào)遞增函數(shù),求實數(shù)a的取值范圍;
(2)當a∈時,證明:函數(shù)f(x)有最小值,并求函數(shù)f(x)的最小值的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在矩形ABCD中,AB=1,AD=2,動點P在以點C為圓心且與BD相切的圓上.若=λ+μ,則λ+μ的最大值為( )
A. 3 B. 2
C. D. 2
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左焦點為,右頂點為,.
(1)求的方程;
(2)過點且與軸不重合的直線與交于,兩點,直線,分別與直線交于,兩點,且以為直徑的圓過點.
(。┣的方程;
(ⅱ)記,的面積分別為,,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com