12.已知條件p:冪函數(shù)f(x)=x${\;}^{{a}^{2}-a-2}$在(0,+∞)上單調(diào)遞增,條件q:g(x)=x+$\frac{1}{x}$極小值不小于a,則q是¬p成立的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既非充分也非必要條件

分析 根據(jù)冪函數(shù)的定義求出a的范圍,從而求出¬p,根據(jù)函數(shù)的單調(diào)性求出g(x)的極小值,從而求出q,結(jié)合集合的包含關(guān)系判斷即可.

解答 解:∵冪函數(shù)f(x)=x${\;}^{{a}^{2}-a-2}$在(0,+∞)上單調(diào)遞增,
∴a2-a-2>0,解得:a>2或a<-1,
故p:a>2或a<-1,¬p:-1≤a≤2;
g(x)=x+$\frac{1}{x}$,g′(x)=$\frac{(x+1)(x-1)}{{x}^{2}}$,
令g′(x)>0,解得:x>1或x<-1,
令g′(x)<0,解得:-1<x<0且x≠0,
故g(x)在(-∞,-1)遞增,在(-1,0)遞減,在(0,1)遞減,在(1,+∞)遞增,
故g(x)的極小值是g(1)=2,
故q:a≤2,
則q是¬p成立必要不充分條件,
故選:B.

點(diǎn)評(píng) 本題考查了充分必要條件,考查冪函數(shù)的性質(zhì)以及函數(shù)的單調(diào)性、極值問(wèn)題,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.在互聯(lián)網(wǎng)時(shí)代,網(wǎng)校培訓(xùn)已經(jīng)成為青年學(xué)習(xí)的一種趨勢(shì),假設(shè)某網(wǎng)校的套題每日的銷(xiāo)售量h(x)(單位:千套)與銷(xiāo)售價(jià)格x(單位:元/套)滿(mǎn)足的關(guān)系式h(x)=f(x)+g(x)(3<x<7,m為常數(shù)),其中f(x)與(x-3)成反比,g(x)與(x-7)的平方成正比,已知銷(xiāo)售價(jià)格為5元/套時(shí),每日可售出套題21千套,銷(xiāo)售價(jià)格為3.5元/套時(shí),每日可售出套題69千套.
(1)求h(x)的表達(dá)式;
(2)假設(shè)網(wǎng)校的員工工資,辦公等所有開(kāi)銷(xiāo)折合為每套題3元(只考慮銷(xiāo)售出的套數(shù)),試確定銷(xiāo)售價(jià)格x的值,使網(wǎng)校每日銷(xiāo)售套題所獲得的利潤(rùn)最大.(保留1位小數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=a(x+1)2-4lnx,a∈R.
(Ⅰ)若a=$\frac{1}{2}$,求曲線f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)若對(duì)任意x∈[1,e],f(x)<1恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知函數(shù)y=x2-2x+3在[0,a]上的值域?yàn)閇2,3],則a的取值范圍是(  )
A.[1,+∞)B.(0,2]C.[1,2]D.(-∞,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知向量$\overrightarrow{m}$=(2cosx,t)(t∈R),$\overrightarrow{n}$=(sinx-cosx,1),函數(shù)y=f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$,將y=f(x)的圖象向左平移$\frac{π}{8}$個(gè)單位長(zhǎng)度后得到y(tǒng)=g(x)的圖象且y=g(x)在區(qū)間[0,$\frac{π}{4}$]內(nèi)的最大值為$\sqrt{2}$.
(1)求t的值及y=f(x)的最小正周期;
(2)設(shè)△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若$\sqrt{2}$g($\frac{A}{2}$-$\frac{π}{4}$)=-1,a=2,求BC邊上的高的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.分別求滿(mǎn)足下列條件的橢圓方程
(1)已知橢圓的中心在原點(diǎn),以坐標(biāo)軸為對(duì)稱(chēng)軸,且經(jīng)過(guò)兩點(diǎn)p1($\sqrt{6}$,1),p2(-$\sqrt{3}$,-$\sqrt{2}$);
(2)已知橢圓以坐標(biāo)軸為對(duì)稱(chēng)軸,且長(zhǎng)軸是短軸的3倍,并且過(guò)點(diǎn)P(3,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.函數(shù)y=$\frac{x}{x-1}$的圖象是下列圖象中的( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.一同學(xué)投籃每次命中的概率是$\frac{1}{2}$,該同學(xué)連續(xù)投藍(lán)5次,每次投籃相互獨(dú)立.
(1)求連續(xù)命中4次的概率;
(2)求恰好命中4次的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.設(shè)命題p:函數(shù)$y=sin(2x+\frac{π}{3})$的圖象向左平移$\frac{π}{6}$個(gè)單位長(zhǎng)度得到的曲線關(guān)于y軸對(duì)稱(chēng);命題q:函數(shù)y=|3x-1|在(-1,+∞)上是增函數(shù),則下列判斷錯(cuò)誤的是( 。
A.p為假B.p∧q為假C.p∨q為真D.¬q為真

查看答案和解析>>

同步練習(xí)冊(cè)答案