精英家教網 > 高中數學 > 題目詳情
7.[示范高中]若一個數列的第m項等于這個數列的前m項的乘積,則稱該數列為“m積數列”.若各項均為正數的等比數列{an}是一個“2017積數列”,且a1>1,則當其前n項的乘積取最大值時n的值為( 。
A.1008B.1009C.1007或1008D.1008或1009

分析 利用新定義,求得數列{an}的第1008項為1,再利用a1>1,q>0,即可求得結論.

解答 解:由題意,a2017=a1a2…a2017,
∴a1a2…a2016=1,
∴a1a2016=a2a2015=a3a2014=…=a1007a1010=a1008a1009=1,
∵a1>1,q>0,
∴a1008>1,0<a1009<1,
∴前n項積最大時n的值為1008.
故選:A.

點評 本題考查等比數列前n項的乘積取最大值時n的值的求法,考查等比數列的性質等基礎知識,考查推理論證能力、運算求解能力,考查化歸與轉化思想、函數與方程思想,是中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

17.已知向量$\overrightarrow a$與$\overrightarrow b$的夾角為120°,且$|\overrightarrow a|=3,|\overrightarrow a-\overrightarrow b|=\sqrt{19}$,則$|\overrightarrow b|$=2.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

18.已知極坐標系的極點與直角坐標系的原點重合,極軸與x軸的非負半軸重合.曲線${C_1}:\left\{\begin{array}{l}x=1+\sqrt{2}t\\ y=-\sqrt{2}t\end{array}\right.$(t為參數),曲線C2的極坐標方程為ρ=ρcos2θ+8cosθ.
(Ⅰ)將曲線C1,C2分別化為普通方程、直角坐標方程,并說明表示什么曲線;
(Ⅱ)設F(1,0),曲線C1與曲線C2相交于不同的兩點A,B,求|AF|+|BF|的值.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

15.已知數列{an}的前n項和為Sn滿足a1=1,log2an=log2an+1-1,則$\frac{{{S_{20}}-{S_{17}}}}{{{a_{20}}-{a_{17}}}}$=2.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

2.已知a,b,c為△ABC的三個角A,B,C所對的邊,若3bcosC=c(1-3cosB),則$\frac{c}{a}$=(  )
A.2:3B.4:3C.3:1D.3:2

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

12.已知數列{an}的前n項和是Sn,且滿足an+3Sn•Sn-1=0(n≥2),若${S_6}=\frac{1}{20}$,則a1=( 。
A.-$\frac{1}{5}$B.$\frac{1}{5}$C.5D.1

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

19.為了檢測某種產品的質量(單位:千克),抽取了一個容量為N的樣本,整理得到的數據作出了頻率分布表和頻率分布直方圖如圖:
 分組 頻數 頻率
[17.5,20) 10 0.05
[20,225) 50 0.25
[22.5,25) a b
[25,27.5) 40 c
[27.5,30] 20 0.10
 合計 N 1
(Ⅰ)求出表中N及a,b,c的值;
(Ⅱ)求頻率分布直方圖中d的值;
(Ⅲ)從該產品中隨機抽取一件,試估計這件產品的質量少于25千克的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

16.在極坐標系中,已知曲線C:ρ=asinθ(a>0),若直線l:θ=$\frac{π}{3}$被曲線C截得的弦長為$\sqrt{3}$,求實數a的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

9.已知曲線C的極坐標方程為ρ2-2$\sqrt{2}$ρcos(θ+$\frac{π}{4}$)-2=0,以極點為平面直角坐標系的原點,極軸為x軸的正半軸,建立平面直角坐標系xOy.
(1)若直線l過原點,且被曲線C截得的弦長最小,求直線l的直角坐標方程;
(2)若M是曲線C上的動點,且點M的直角坐標為(x,y),求x+y的最大值.

查看答案和解析>>

同步練習冊答案