19.執(zhí)行如圖所示的程序框圖,如果輸入正整數(shù)m,n,滿足n≥m,那么輸出的p等于(  )
A.$C_n^{m-1}$B.$A_n^{m-1}$C.$C_n^m$D.$A_n^m$

分析 分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是利用循環(huán)計算并輸出變量P的值,模擬程序的運行,用表格對程序運行過程中各變量的值進行分析,不難得到輸出結(jié)果.

解答 解:第一次循環(huán):k=1,p=1,p=n-m+1;
第二次循環(huán):k=2,p=(n-m+1)(n-m+2);
第三次循環(huán):k=3,p=(n-m+1)(n-m+2)(n-m+3)

第m次循環(huán):k=m,p=(n-m+1)(n-m+2)(n-m+3)…(n-1)n
此時結(jié)束循環(huán),輸出p=(n-m+1)(n-m+2)(n-m+3)…(n-1)n=Anm
故選:D.

點評 本題考查了循環(huán)結(jié)構(gòu)的程序框圖、排列公式,考查了學(xué)生的視圖能力以及觀察、推理的能力,要注意對第m次循環(huán)結(jié)果的歸納,這是本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.計算${(\frac{{\sqrt{2}i}}{1+i})^{100}}$的結(jié)果為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知實數(shù)a,b,則“a<b”是“a2<b2”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)各項均為正數(shù)的數(shù)列{an}的前n項和為Sn,滿足4Sn=an+12-4n-1,n∈N*,且a1=1.
(1)求數(shù)列{an}的通項公式;
(2)證明:對一切正整數(shù)n,有$\frac{1}{{{a_1}{a_2}}}+\frac{1}{{{a_2}{a_3}}}+…+\frac{1}{{{a_n}{a_{n+1}}}}<\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在直角坐標(biāo)系xOy中,以O(shè)為極點,x軸正半軸為極軸建立直角坐標(biāo)系,圓C的極坐標(biāo)方程為$ρ=2\sqrt{2}cos(θ+\frac{π}{4})$,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=t\\ y=-1+2\sqrt{2}t\end{array}\right.$(t為參數(shù)),直線l和圓C交于A,B兩點,P是圓C上不同于A,B的任意一點.
(Ⅰ)求圓C及l(fā)的直角坐標(biāo)方程;
(Ⅱ)求△PAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)m∈R,實數(shù)x,y滿足$\left\{\begin{array}{l}x≥m\\ 2x-3y+6≥0\\ 3x-2y-6≤0\end{array}\right.$,若|x+2y|≤18,則實數(shù)m的取值范圍是[-3,6].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.定義在R上的函數(shù)f(x)滿足$f({x+2})=\frac{1}{2}f(x)$,當(dāng)x∈[0,2)時,$f(x)=\left\{{\begin{array}{l}{\frac{1}{2}-2{x^2},0≤x<1}\\{-{2^{1-|{\frac{3}{2}-x}|}},1≤x<2}\end{array}}\right.$.函數(shù)g(x)=lnx-m.若任意的x1∈[-4,-2),均存在${x_2}∈[{{e^{-1}},{e^2}}]$使得不等式f(x1)-g(x2)≥0恒成立,則實數(shù)m的取值范圍是(  )
A.[10,+∞)B.[7,+∞)C.[-3,+∞)D.[0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.復(fù)數(shù)z=$\frac{i}{3-i}$的共軛復(fù)數(shù)為$\overline z$,則$\overline z$在復(fù)平面對應(yīng)的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知常數(shù)a>0,函數(shù)f(x)=ln(1+ax)-$\frac{2x}{x+2}$.
(1)若a=$\frac{1}{2}$,判斷f(x)的單調(diào)性;
(2)若f(x)存在兩個極值點x1,x2,且f(x1)+f(x2)>0,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案