17.某學(xué)校高一年級學(xué)生某次身體素質(zhì)體能測試的原始成績采用百分制,已知所有這些學(xué)生的原始成績均分布在[50,100]內(nèi),發(fā)布成績使用等級制各等級劃分標(biāo)準(zhǔn)見下表,規(guī)定:A、B、C三級為合格等級,D為不合格等級.
百分制85分及以上70分到84分60分到69分60分以下
等級ABCD
為了解該校高一年級學(xué)生身體素質(zhì)情況,從中抽取了n名學(xué)生的原始成績作為樣本進(jìn)行統(tǒng)計,按照[50,60),[60,70),[70,80),[80,90),[90,100]的分組作出頻率分布直方圖如圖1所示,樣本中分?jǐn)?shù)在80分及以上的所有數(shù)據(jù)的莖葉圖如圖2所示.

(1)求n和頻率分布直方圖中x,y的值;
(2)根據(jù)樣本估計總體的思想,以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,若在該校高一學(xué)生中任選3人,求至少有1人成績是合格等級的概率.

分析 (1)由題意知,先求出樣本容量,由此能求出n和頻率分布直方圖中的x,y的值.
(2)成績是合格等級人數(shù)為45人,從而得到從該校學(xué)生中任選1人,成績是合格等級的概率為$\frac{9}{10}$,由此能求出至少有1人成績是合格等級的概率.

解答 解:(1)由題意知,樣本容量n=$\frac{6}{0.012×10}$=50,
x=$\frac{2}{50×10}$=0.004,
y=$\frac{1-0.04-0.1-0.12-0.56}{10}$=0.018,
(2)成績是合格等級人數(shù)為:(1-0.1)×50=45人,
抽取的50人中成績是合格等級的頻率為$\frac{9}{10}$,
故從該校學(xué)生中任選1人,成績是合格等級的概率為$\frac{9}{10}$,
設(shè)在該校高一學(xué)生中任選3人,至少有1人成績是合格等級的事件為A,
則P(A)=1-${C}_{3}^{0}$ (1-$\frac{9}{10}$)3=$\frac{999}{1000}$.

點評 本題考查概率的求法,是中檔題,解題時要認(rèn)真審題,注意排列組合知識的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.計算${({\frac{1+i}{1-i}})^{2017}}$=( 。
A.-1B.iC.-iD.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.過雙曲線$\frac{{x}^{2}}{{a}^{2}}$-y2=1(a>0)的左焦點作直線l與雙曲線交于A,B兩點,使得|AB|=4,若這樣的直線有且僅有兩條,則a的取值范圍是( 。
A.(0,$\frac{1}{2}$)B.(2,+∞)C.($\frac{1}{2}$,2)D.(0,$\frac{1}{2}$)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在平面直角坐標(biāo)系xOy中,已知直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=1+t}\\{y=\sqrt{3}t}\end{array}}\right.$(t為參數(shù)),橢圓C的參數(shù)方程為$\left\{\begin{array}{l}x=2cosθ\\ y=\sqrt{3}sinθ\end{array}$ (θ為參數(shù))(1).直線l的極坐標(biāo)方程與橢圓C的普通方程(2)設(shè)P(1,0)直線l與橢圓C相交于A,B兩點,求線段||PA|-|PB||的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知實數(shù)集R為全集,A={x|log2(3-x)≤2},B={x||x-3|≤2},
(1)求A,B;
(2)求∁R(A∩B).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的兩個焦點為${F_1},{F_2},|{{F_1}{F_2}}|=2\sqrt{2}$,點A,B在橢圓上,F(xiàn)1在線段AB上,且△ABF2的周長等于$4\sqrt{3}$.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過圓O:x2+y2=4上任意一點P作橢圓C的兩條切線PM和PN與圓O交于點M,N,求△PMN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.某市文化部門為了了解本市市民對當(dāng)?shù)氐胤綉蚯欠裣矏,?5-65歲的人群中隨機抽樣了n人,得到如下的統(tǒng)計表和頻率分布直方圖.
(Ⅰ)寫出其中的a、b及x和y的值;
(Ⅱ)若從第1,2,3組回答喜歡地方戲曲的人中用分層抽樣的方法抽取6人,求這三組每組分別抽取多少人?
(Ⅲ)在(Ⅱ)抽取的6人中隨機抽取2人,用X表示其中是第3組的人數(shù),求X的分布列和期望.
組號分組喜愛人數(shù)喜愛人數(shù)
占本組的頻率
第1組[15,25)a0.10
第2組[25,35)b0.20
第3組[35,45)60.40
第4組[45,55)120.60
第5組[55,65]c0.80

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=ax3-5x2-bx,a,b∈R,x=3是f(x)的極值點,且f(1)=-1.
(1)求實數(shù)a,b的值;
(2)求f(x)在[2,4]上的最小值和最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)y=f(x)是定義在R上的偶函數(shù),且在(-∞,0]上是增函數(shù),若不等式f(a)≥f(x)對任意x∈[1,2]恒成立,則實數(shù)a的取值范圍是(  )
A.(-∞,1]B.[-1,1]C.(-∞,2]D.[-2,2]

查看答案和解析>>

同步練習(xí)冊答案