【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知點(diǎn)的極坐標(biāo)為,圓的參數(shù)方程為(為參數(shù)),(1)直線過且與圓相切,求直線的極坐標(biāo)方程;(2)過點(diǎn)且斜率為的直線與圓交于, 兩點(diǎn),若,求實(shí)數(shù)的值.
【答案】(1)或.(2)-3.
【解析】試題分析:(1)先根據(jù)直線與圓相切求直線的直角坐標(biāo)方程(注意斜率不存在的情形),再利用 將直角坐標(biāo)方程化為極坐標(biāo)方程(2)設(shè)直線的參數(shù)方程,根據(jù)參數(shù)幾何意義得,將直線的參數(shù)方程代入圓的方程,并利用韋達(dá)定理得,解方程可得實(shí)數(shù)的值.注意滿足判別式大于零.
試題解析:解:(1)的直角坐標(biāo)為,圓的直角坐標(biāo)方程為,
設(shè)直線,即,
因?yàn)橹本與圓相切,所以,解得,
此時(shí)直線的方程為,
若直線的斜率不存在時(shí),直線的方程為,
所以直線的極坐標(biāo)方程為或.
(2)將直線的參數(shù)方程(時(shí)參數(shù))代入圓的方程,
得: , ,
設(shè), ,則,因?yàn)?/span>,所以,
所以,解得,
由知,所求的值為-3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓F1:(x+1)2+y2=16,定點(diǎn)F2(1,0),A是圓F1上的一動(dòng)點(diǎn),線段F2A的垂直平分線交半徑F1A于P點(diǎn).
(1)求P點(diǎn)的軌跡C的方程;
(2)四邊形EFGH的四個(gè)頂點(diǎn)都在曲線C上,且對(duì)角線EG,FH過原點(diǎn)O,
若kEGkFH=-,求證:四邊形EFGH的面積為定值,并求出此定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校課改實(shí)行選修走班制,現(xiàn)有甲,乙,丙,丁四位學(xué)生準(zhǔn)備選修物理,化學(xué),生物三個(gè)科目.每位學(xué)生只選修一個(gè)科目,且選修其中任何一個(gè)科目是等可能的.
(1)恰有2人選修物理的概率;
(2)選修科目個(gè)數(shù)ξ的分布列及期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】近代統(tǒng)計(jì)學(xué)的發(fā)展起源于二十世紀(jì)初,它是在概率論的基礎(chǔ)上發(fā)展起來(lái)的,統(tǒng)計(jì)性質(zhì)的工作可以追溯到遠(yuǎn)古的“結(jié)繩記事”和《二十四史》中大量的關(guān)于我人口、錢糧、 水文、天文、地震等資料的記錄.近幾年,霧霾來(lái)襲,對(duì)某市該年11月份的天氣情況進(jìn)行統(tǒng)計(jì),結(jié)果如下:表一
日期 |
|
|
|
|
|
|
|
|
|
|
|
| |||
天氣 | 晴 | 霾 | 霾 | 陰 | 霾 | 霾 | 陰 | 霾 | 霾 | 霾 | 陰 | 晴 | 霾 | 霾 | 霾 |
日期 |
|
|
|
|
|
| |||||||||
天氣 | 霾 | 霾 | 霾 | 陰 | 晴 | 霾 | 霾 | 晴 | 霾 | 晴 | 霾 | 霾 | 霾 | 晴 | 霾 |
由于此種情況某市政府為減少霧霾于次年采取了全年限行的政策.
下表是一個(gè)調(diào)査機(jī)構(gòu)對(duì)比以上兩年11月份(該年不限行 天、次年限行天共 天)的調(diào)查結(jié)果:
表二
不限行 | 限行 | 總計(jì) | |
沒有霧霾 |
| ||
有霧霾 |
| ||
總計(jì) |
(1)請(qǐng)由表一數(shù)據(jù)求 ,并求在該年11月份任取一天,估計(jì)該市是晴天的概率;
(2)請(qǐng)用統(tǒng)計(jì)學(xué)原理計(jì)算若沒有 的把握認(rèn)為霧霾與限行有關(guān)系,則限行時(shí)有多少天沒有霧霾?
(由于不能使用計(jì)算器,所以表中數(shù)據(jù)使用時(shí)四舍五入取整數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=2cosxsin(x+ )﹣a,且x=﹣ 是方程f(x)=0的一個(gè)解.
(1)求實(shí)數(shù)a的值及函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(3)若關(guān)于x的方程f(x)=b在區(qū)間(0, )上恰有三個(gè)不相等的實(shí)數(shù)根x1 , x2 , x3 , 直接寫出實(shí)數(shù)b的取值范圍及x1+x2+x3的取值范圍(不需要給出解題過程)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)=ax3+bx2+cx+d是實(shí)數(shù)集R上的偶函數(shù),并且f(x)<0的解為(﹣2,2),則 的值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=(log2x﹣2)(log4x﹣ )
(1)當(dāng)x∈[2,4]時(shí),求該函數(shù)的值域;
(2)若f(x)>mlog2x對(duì)于x∈[4,16]恒成立,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】袋子中有大小、質(zhì)地相同的紅球、黑球各一個(gè),現(xiàn)有放回地隨機(jī)摸取3次,每次摸取一個(gè)球,若摸出紅球,得10分,摸出黑球,得5分,則3次摸球所得總分至少是25分的概率是___.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義域?yàn)镽的函數(shù) 是奇函數(shù).
(1)求實(shí)數(shù)a,b的值;
(2)判斷f(x)在(﹣∞,+∞)上的單調(diào)性;
(3)若f(k3x)+f(3x﹣9x+2)>0對(duì)任意x≥1恒成立,求k的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com