(2012•惠州模擬)18世紀(jì)的時(shí)候,歐拉通過研究,發(fā)現(xiàn)凸多面體的面數(shù)F、頂點(diǎn)數(shù)V和棱數(shù)E滿足一個(gè)等式關(guān)系.請(qǐng)你研究你熟悉的一些幾何體(如三棱錐、三棱柱、正方體…),歸納出F、V、E之間的關(guān)系等式:
V+F-E=2
V+F-E=2
分析:通過列舉正方體、三棱柱、三棱錐的面數(shù)F、頂點(diǎn)數(shù)V和棱數(shù)E,得到規(guī)律:V+F-E=2,進(jìn)而發(fā)現(xiàn)此公式對(duì)任意凸多面體都成立,由此得到本題的答案.
解答:解:凸多面體的面數(shù)為F、頂點(diǎn)數(shù)為V和棱數(shù)為E,舉例如下
①正方體:F=6,V=8,E=12,得V+F-E=8+6-12=2;
②三棱柱:F=5,V=6,E=9,得V+F-E=5+6-9=2;
③三棱錐:F=4,V=4,E=6,得V+F-E=4+4-6=2.
根據(jù)以上幾個(gè)例子,猜想:凸多面體的面數(shù)F、頂點(diǎn)數(shù)V和棱數(shù)E滿足如下關(guān)系:V+F-E=2
再通過舉四棱錐、六棱柱、…等等,發(fā)現(xiàn)上述公式都成立.
因此歸納出一般結(jié)論:V+F-E=2
故答案為:V+F-E=2
點(diǎn)評(píng):本題由幾個(gè)特殊多面體,觀察它們的頂點(diǎn)數(shù)、面數(shù)和棱數(shù),歸納出一般結(jié)論,得到歐拉公式,著重考查了歸納推理和凸多面體的性質(zhì)等知識(shí),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•惠州模擬)已知實(shí)數(shù)4,m,9構(gòu)成一個(gè)等比數(shù)列,則圓錐曲線
x2
m
+y2=1
的離心率為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•惠州模擬)已知橢圓C:  
x2
a2
+
y2
b2
=1  (a>b>0)
的離心率為
6
3
,且經(jīng)過點(diǎn)(
3
2
,
1
2
)

(Ⅰ)求橢圓C的方程;
(Ⅱ)過點(diǎn)P(0,2)的直線交橢圓C于A,B兩點(diǎn),求△AOB(O為原點(diǎn))面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•惠州模擬)如圖,已知AB⊥平面ACD,DE∥AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中點(diǎn).
(1)求證:AF∥平面BCE;
(2)求證:平面BCE⊥平面CDE;
(3)求平面BCE與平面ACD所成銳二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•惠州模擬)如圖,在底面是矩形的四棱錐P-ABCD中,PA⊥平面ABCD,PA=AB=2,BC=2,E是PD的中點(diǎn).
(1)求證:平面PDC⊥平面PAD;
(2)求二面角E-AC-D所成平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•惠州模擬)計(jì)算:
1
-1
1-x2
dx
=
π
2
π
2

查看答案和解析>>

同步練習(xí)冊(cè)答案