【題目】我國古代數(shù)學(xué)名著《續(xù)古摘奇算法》(楊輝)一書中有關(guān)于三階幻方的問題:將1,2,3,4,5,6,7,8,9分別填入3×3的方格中,使得每一行,每一列及對角線上的三個(gè)數(shù)的和都相等(如圖所示),我們規(guī)定:只要兩個(gè)幻方的對應(yīng)位置(如每行第一列的方格)中的數(shù)字不全相同,就稱為不同的幻方,那么不同的三階幻方的個(gè)數(shù)是(

4

9

2

3

5

7

8

1

6

A.9B.8C.6D.4

【答案】B

【解析】

首先如題設(shè)分析,每行每列的所有書的和都是15,然后列舉所有3個(gè)數(shù)的和為15的組合情況,含5的有5個(gè),所以5放中間,含2,4,6,8的都3個(gè),所以放在四個(gè)角處,并且456258分占兩條對角線,再用列舉法即可得到結(jié)論.

因?yàn)樗袛?shù)的和為,所以每行每列,以及對角線的和都是15,采用列舉法:492、357、816;276951、438;294、753618;438、951、276;816357、492618753、294;672、159、834834、159、672.8種排法,則不同的三階幻方的個(gè)數(shù)是8.

故選:B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已如橢圓C:的兩個(gè)焦點(diǎn)與其中一個(gè)頂點(diǎn)構(gòu)成一個(gè)斜邊長為4的等腰直角三角形.

(1)求橢圓C的標(biāo)準(zhǔn)方程;

(2)設(shè)動直線l交橢圓CP,Q兩點(diǎn),直線OPOQ的斜率分別為k,k.,求證OPQ的面積為定值,并求此定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某公園有三條觀光大道、圍成直角三角形,其中直角邊,斜邊.

1)若甲乙都以每分鐘100的速度從點(diǎn)出發(fā),甲沿運(yùn)動,乙沿運(yùn)動,乙比甲遲2分鐘出發(fā),求乙出發(fā)后的第1分鐘末甲乙之間的距離;

2)現(xiàn)有甲、乙、丙三位小朋友分別在點(diǎn)、,設(shè),乙丙之間的距離是甲乙之間距離2倍,且,請將甲乙之間的距離表示為的函數(shù),并求甲乙之間的最小距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為常數(shù),為自然對數(shù)的底數(shù))的圖象在點(diǎn)處的切線與該函數(shù)的圖象恰好有三個(gè)公共點(diǎn),求實(shí)數(shù)的取值范圍是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),是兩條不同的直線,,,是三個(gè)不同的平面,給出下列四個(gè)命題:(1)若,,則;(2)若,,,則;(3)若,,則;(4)若,則,其中正確命題的序號是(

A.1)(2B.2)(3

C.3)(4D.1)(4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓錐的頂點(diǎn)為,底面圓心為,半徑為

(1)設(shè)圓錐的母線長為,求圓錐的體積;

(2)設(shè)、是底面半徑,且,為線段的中點(diǎn),如圖.求異面直線所成的角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,已知橢圓的離心率為,點(diǎn)在橢圓上,若圓的一條切線(斜率存在)與橢圓C有兩個(gè)交點(diǎn)A,B,且.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)求圓O的標(biāo)準(zhǔn)方程;

3)已知橢圓C的上頂點(diǎn)為M,點(diǎn)N在圓O上,直線MN與橢圓C相交于另一點(diǎn)Q,且,求直線MN的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合是實(shí)數(shù)集的子集,如果正實(shí)數(shù)滿足:對任意都存在使得則稱為集合的一個(gè)“跨度”,已知三個(gè)命題:

(1)若為集合的“跨度”,則也是集合的“跨度”;

(2)集合的“跨度”的最大值是4;

(3)是集合的“跨度”.

這三個(gè)命題中正確的個(gè)數(shù)是()

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓)的離心率為,且經(jīng)過點(diǎn).

(1)求橢圓的方程;

(2)過點(diǎn)作直線與橢圓交于不同的兩點(diǎn),,試問在軸上是否存在定點(diǎn)使得直線與直線恰關(guān)于軸對稱?若存在,求出點(diǎn)的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案