(12分)如圖所示,已知圓為圓上一動(dòng)點(diǎn),點(diǎn)上,點(diǎn)上,且滿足的軌跡為曲線.

(1)求曲線的方程;

(2)若直線與(1)中所求點(diǎn)的軌跡交于不同兩點(diǎn)是坐標(biāo)原點(diǎn),且,求△的面積的取值范圍.

  

 

 

 

 

【答案】

 

解:(1)

所以為線段的垂直平分線,

所以動(dòng)點(diǎn)的軌跡是以,為焦點(diǎn)的橢圓,且長(zhǎng)軸長(zhǎng)為,焦距,所以, 

曲線E的方程為. 4分                                                  

(2)設(shè)F(x1,y1)H(x2,y2),則由,

  消去y得

 

                   

 

    又點(diǎn)到直線的距離

  

        

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•潮州二模)如圖所示,已知AB為圓O的直徑,點(diǎn)D為線段AB上一點(diǎn),且AD=
1
3
DB,點(diǎn)C為圓O上一點(diǎn),且BC=
3
AC.點(diǎn)P在圓O所在平面上的正投影為點(diǎn)D,PD=DB.
(1)求證:PA⊥CD;
(2)求二面角C-PB-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,已知圓為圓上一動(dòng)點(diǎn),點(diǎn)P在AM上,點(diǎn)N在CM上,且滿足的軌跡為曲線E.

(I)求曲線E的方程;                                               

(II)過點(diǎn)A且傾斜角是45°的直線l交曲線E于兩點(diǎn)H、Q,求|HQ|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省高三12月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

如圖所示,已知圓為圓上一動(dòng)點(diǎn),點(diǎn)是線段的垂直平分線與直線的交點(diǎn).

(1)求點(diǎn)的軌跡曲線的方程;

(2)設(shè)點(diǎn)是曲線上任意一點(diǎn),寫出曲線在點(diǎn)處的切線的方程;(不要求證明)

(3)直線過切點(diǎn)與直線垂直,點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)為,證明:直線恒過一定點(diǎn),并求定點(diǎn)的坐標(biāo).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年廣東省佛山市高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

如圖所示,已知AB為圓O的直徑,點(diǎn)D為線段AB上一點(diǎn),且AD=DB,點(diǎn)C為圓O上一點(diǎn),且BC=AC.點(diǎn)P在圓O所在平面上的正投影為點(diǎn)D,PD=DB.
(1)求證:PA⊥CD;
(2)求二面角C-PB-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年重慶市高三上學(xué)期第四次月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

( 本小題滿分12分)如圖所示,已知圓為圓上一動(dòng)點(diǎn),點(diǎn)上,點(diǎn)上,且滿足的軌跡為曲線。

求曲線的方程;

若過定點(diǎn)F(0,2)的直線交曲線于不同的兩點(diǎn)(點(diǎn)在點(diǎn)之間),且滿足,求的取值范圍。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案