定義:如果一條直線同時與n個圓相切,則稱這條直線為這n個圓的公切線.已知有2013個圓Cn:(x-an2+(y-bn2=rn2(n=1,2,3,…,2013),其中an ,bn,rn的值由如圖程序給出,則這2013個圓的公切線條數(shù)( 。
A、只有一條B、恰好有兩條
C、有超過兩條D、沒有公切線
考點:圓的切線方程
專題:計算題,直線與圓
分析:由程序可知,圓心坐標(biāo)(mn,2mn)在直線y=2x上,圓的半徑為|m|n,相鄰兩圓半徑之差為|m|,相鄰兩圓圓心距均為
5
|m|,從而可得結(jié)論.
解答: 解:由程序可知,圓心坐標(biāo)(mn,2mn)在直線y=2x上,圓的半徑為|m|n,
∴相鄰兩圓半徑之差為|m|,相鄰兩圓圓心距均為
[m(n+1)-mn]2+[2m(n+1)2-2mn]2
=
5
|m|,
∴這2013個圓的公切線恰好有兩條,是外公切線.
故選:B.
點評:本題考查程序框圖,考查直線與圓的位置關(guān)系,正確理解程序的作用是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若直線l的向上方向與y軸的正方向成30°角,則直線l的傾斜角為( 。
A、30°
B、60°
C、30°或150°
D、60°或120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

閱讀如圖程序框圖,則輸出的數(shù)據(jù)S=( 。
A、30B、31C、62D、63

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
2
x2-9lnx
在區(qū)間(0,a)上不存在極值點,則a的最大值是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)z=1+i(i為虛數(shù)單位),則復(fù)數(shù)z的共軛復(fù)數(shù)的模|
.
z
|
=( 。
A、1
B、
2
C、2
D、
1+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,設(shè)A(2,2),B(-2,-3),沿y軸把坐標(biāo)平面折成120°的二面角后,AB的長是( 。
A、
35
B、6
C、3
5
D、
53

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,PA切⊙O于A,PB切⊙O于B,OP交⊙O于C,下列結(jié)論中,錯誤的是( 。
A、∠1=∠2
B、PA=PB
C、AB⊥OP
D、PA2=PC•PO

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

經(jīng)過兩點A(-m,6),B(1,3m)的直線的斜率是6,則m=( 。
A、-5B、-4C、4D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【選修4-4:坐標(biāo)系與參數(shù)方程】
已知圓C的極坐標(biāo)方程是:ρ=4cosθ,直線l的參數(shù)方程是:
x=2+tcosα
y=
2
+tsinα
(其中t為參數(shù),α為常數(shù),且α是直線l的傾斜角).
(Ⅰ)試求圓C的直角坐標(biāo)方程和直線l的一般方程.
(Ⅱ)當(dāng)圓C被直線l所截得的弦長為2
3
時,求α的值.

查看答案和解析>>

同步練習(xí)冊答案