(湖北卷文17) 已知函數(shù)(m為常數(shù),且m>0)有極大值9.
(Ⅰ)求m的值;
(Ⅱ)若斜率為的直線是曲線的切線,求此直線方程.
【試題解析】
解:(Ⅰ) f’(x)=3x2+2mx-m2=(x+m)(3x-m)=0,則x=-m或x=m,
當x變化時,f’(x)與f(x)的變化情況如下表:
x | (-∞,-m) | -m | (-m,) |
| (,+∞) |
f’(x) | + | 0 | - | 0 | + |
f (x) | 極大值 | 極小值 |
從而可知,當x=-m時,函數(shù)f(x)取得極大值9,
即f(-m)=-m3+m3+m3+1=9,∴m=2.
(Ⅱ)由(Ⅰ)知,f(x)=x3+2x2-4x+1,
依題意知f’(x)=3x2+4x-4=-5,∴x=-1或x=-.
又f(-1)=6,f(-)=,
所以切線方程為y-6=-5(x+1),或y-=-5(x+),
即5x+y-1=0,或135x+27y-23=0.
【試題解析】本題主要考查應用導數(shù)研究函數(shù)的性質(zhì)的方法和運算能力。
【高考考點】函數(shù)的性質(zhì)與切線方程的求法。
【易錯提醒】忽略“為常數(shù),且”
【備考提示】函數(shù)的本質(zhì)在于把握函數(shù)的性質(zhì).
科目:高中數(shù)學 來源: 題型:
(湖北卷文17) 已知函數(shù)(m為常數(shù),且m>0)有極大值9.
(Ⅰ)求m的值;
(Ⅱ)若斜率為的直線是曲線的切線,求此直線方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com