(本題滿分14分)
已知二次函數(shù)+的圖象通過(guò)原點(diǎn),對(duì)稱軸為,.是的導(dǎo)函數(shù),且 .
(1)求的表達(dá)式(含有字母);
(2)若數(shù)列滿足,且,求數(shù)列的通項(xiàng)公式;
(3)在(2)條件下,若,,是否存在自然數(shù),使得當(dāng)時(shí)恒成立?若存在,求出最小的;若不存在,說(shuō)明理由.
(1);(2);(3)。
【解析】
試題分析:(I)由已知,可得,, …… 1分
∴解之得, ……3分
…… 4分
(II) …… 5分
= …… 8分(III)
…… 10分
(1)
(2)
(1)—(2)得: … 12分
=,即,當(dāng)時(shí), … 13分
,使得當(dāng)時(shí),恒成立 …… 14分
考點(diǎn):二次函數(shù)的性質(zhì);數(shù)列通項(xiàng)公式的求法;用錯(cuò)位相減法求數(shù)列的前n項(xiàng)和。
點(diǎn)評(píng):若已知遞推公式為的形式求通項(xiàng)公式常用累加法。
注:①若是關(guān)于n的一次函數(shù),累加后可轉(zhuǎn)化為等差數(shù)列求和;
②若是關(guān)于n的二次函數(shù),累加后可分組求和;
③是關(guān)于n的指數(shù)函數(shù),累加后可轉(zhuǎn)化為等比數(shù)列求和;
④是關(guān)于n的分式函數(shù),累加后可裂項(xiàng)求和。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
π |
3 |
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本題滿分14分)如圖,四邊形ABCD為矩形,AD⊥平面ABE,AE=EB=BC=2,為上的點(diǎn),且BF⊥平面ACE.
(1)求證:AE⊥BE;(2)求三棱錐D-AEC的體積;(3)設(shè)M在線段AB上,且滿足AM=2MB,試在線段CE上確定一點(diǎn)N,使得MN∥平面DAE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江蘇省高三上學(xué)期期中考試數(shù)學(xué) 題型:解答題
(本題滿分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}
(Ⅰ)若AB=[0,3],求實(shí)數(shù)m的值
(Ⅱ)若ACRB,求實(shí)數(shù)m的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年福建省高三上學(xué)期第三次月考理科數(shù)學(xué)卷 題型:解答題
(本題滿分14分)
已知點(diǎn)是⊙:上的任意一點(diǎn),過(guò)作垂直軸于,動(dòng)點(diǎn)滿足。
(1)求動(dòng)點(diǎn)的軌跡方程;
(2)已知點(diǎn),在動(dòng)點(diǎn)的軌跡上是否存在兩個(gè)不重合的兩點(diǎn)、,使 (O是坐標(biāo)原點(diǎn)),若存在,求出直線的方程,若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆江西省高一第二學(xué)期入學(xué)考試數(shù)學(xué) 題型:解答題
(本題滿分14分)已知函數(shù).
(1)求函數(shù)的定義域;
(2)判斷的奇偶性;
(3)方程是否有根?如果有根,請(qǐng)求出一個(gè)長(zhǎng)度為的區(qū)間,使
;如果沒(méi)有,請(qǐng)說(shuō)明理由?(注:區(qū)間的長(zhǎng)度為).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com