已知a>b>1>c>0,對以下不等式
①ca>cb
②c 
1
a
>c 
1
b

③(
1
c
a>(
1
c
b
④(
1
c
 
1
a
>(
1
c
 
1
b

⑤logc
1
a
>logc
1
b

其中成立的是( 。
A、①②⑤B、②③④
C、②③⑤D、③④⑤
考點(diǎn):函數(shù)單調(diào)性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:分別根據(jù)指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性即可得到結(jié)論.
解答: 解:①∵a>b>1>c>0,∴ca<cb,∴①錯(cuò)誤.
②∵a>b>1>c>0,∴
1
a
1
b
,∴c 
1
a
>c 
1
b
成立.
③∵a>b>1>c>0,∴
1
c
1,即(
1
c
a>(
1
c
b成立.
④∵a>b>1>c>0,∴
1
c
1,
1
a
1
b
,∴(
1
c
 
1
a
<(
1
c
 
1
b
,∴④錯(cuò)誤.
⑤④∵a>b>1>c>0,∴0<
1
a
1
b
,∴l(xiāng)ogc
1
a
>logc
1
b
,成立.
故成立的是②③⑤,
故選:C.
點(diǎn)評:本題主要考查函數(shù)值的大小比較,利用指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=sin2x(0≤x≤π)與x軸所圍成的圖形面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y滿足約束條件
3x-y-6≤0
x-y+2≥0
x,y≥0
,若目標(biāo)函數(shù)z=ax+by(a,b>0)的最大值是12,則a2+b2的最小值是( 。
A、
6
13
B、
36
5
C、
6
5
D、
36
13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a=log23,b=log43,c=sin90°,則(  )
A、a<c<b
B、b<c<a
C、c<a<b
D、c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(1,2,-1),則向量
a
的模的大小為(  )
A、4
B、6
C、
6
D、
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

1
-1
4-x2
dx=( 。
A、2
3
B、2π
C、
2
3
π+
3
D、
5
4
π+
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在星期一至星期五的5天內(nèi)安排2門不同的測試,每天最多進(jìn)行一門考試,且不能連續(xù)兩天有考試,那么不同的考試安排方案種數(shù)( 。
A、6B、8C、12D、16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z=1-i,那么|z|=( 。
A、0
B、1
C、
2
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
1
2
,F(xiàn)為右焦點(diǎn),點(diǎn)A、B分別為左、右頂點(diǎn),橢圓E上的點(diǎn)到F的最短距離為1
(l)求橢圓E的方程;
(2)設(shè)t∈R且t≠0,過點(diǎn)M(4,t)的直線MA,MB與橢圓E分別交于點(diǎn)P,Q.求證:點(diǎn)P,F(xiàn),Q共線.

查看答案和解析>>

同步練習(xí)冊答案