如圖,在直三棱柱中,,,且中點(diǎn).

(I)求證:平面;

(Ⅱ)求證:平面.

 

【答案】

(Ⅰ)見解析;(Ⅱ)見解析.

【解析】

試題分析:(Ⅰ)連接于點(diǎn),連接,則可證的中位線,則有,根據(jù)直線與平面平行的判定定理即知,;(Ⅱ)先由,根據(jù)直線與平面垂直的判定定理可知,,由直線與平面垂直的性質(zhì)定理可知;由角的與余切值相等得到,根據(jù)等量代換則有,即,結(jié)合直線與平面垂直的判定定理可知,.

試題解析:(Ⅰ)連接于點(diǎn),連接,如圖:

為正方形,∴中點(diǎn),

中點(diǎn),∴的中位線,

,

,,

.                   4分

(Ⅱ)∵,又中點(diǎn),∴,

又∵在直棱柱中,,

,∴,

又∵,∴,

,所以.         8分

在矩形中,,

,

,

.            12分

考點(diǎn):1.直線與平面平行的判定定理;2.直線與平面垂直的判定定理;3.直線與平面垂直的性質(zhì)定理

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在直三棱柱中,∠ACB=90°,AC=BC=1,側(cè)棱AA1=
2
,M為A1B1的中點(diǎn),則AM與平面AA1C1C所成角的正切值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆廣東省高二下期中理科數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,在直三棱柱中, AB=1,,

∠ABC=60.

(1)證明:;

(2)求二面角A——B的正切值。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年天津市高三第二次月考文科數(shù)學(xué) 題型:解答題

(本小題滿分13分)如圖,在直三棱柱中,,分別為的中點(diǎn),四邊形是邊長為的正方形.

(Ⅰ)求證:平面;

(Ⅱ)求證:平面;

(Ⅲ)求二面角的余弦值.

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年四川省高三2月月考理科數(shù)學(xué) 題型:解答題

如圖,在直三棱柱中,,,的中點(diǎn).

(Ⅰ)求證:∥平面

(Ⅱ)求二面角的余弦值;

(Ⅲ)試問線段上是否存在點(diǎn),使 角?若存在,確定點(diǎn)位置,若不存在,說明理由.

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆云南省高二9月月考數(shù)學(xué)試卷 題型:解答題

如圖,在直三棱柱中,,點(diǎn)的中點(diǎn).

求證:(1);(2)平面.

 

 

 

查看答案和解析>>

同步練習(xí)冊答案