如圖,曲線C1是以原點(diǎn)O為中心,F(xiàn)1,F(xiàn)2為焦點(diǎn)的橢圓的一部分,曲線C2是以O(shè)為頂點(diǎn),F(xiàn)2(1,0)為焦點(diǎn)的拋物線的一部分,是曲線C1和C2的交點(diǎn).
(I)求曲線C1和C2所在的橢圓和拋物線的方程;
(II)過F2作一條與x軸不垂直的直線,與曲線C2交于C,D兩點(diǎn),求△CDF1面積的取值范圍.

【答案】分析:(I)先設(shè)出拋物線以及橢圓方程,根據(jù)F2(1,0)為焦點(diǎn),求出p=1,得到拋物線方程;再根據(jù)()在橢圓上,即可求出橢圓方程;
(II)設(shè)出直線方程x=my+1,并根據(jù)條件求出m的取值范圍;再聯(lián)立直線與拋物線方程,根據(jù)韋達(dá)定理以及|y1-y2|=求出三角形面積的表達(dá)式,最后結(jié)合m的取值范圍即可求出△CDF1面積的取值范圍.
解答:解:(I)設(shè)拋物線方程為:y2=2px,由F2(1,0)為焦點(diǎn),所以p=1.∴y2=4x
設(shè)橢圓方程為;代入(,),解得a2=9,
所以橢圓方程為:=1.
(II)設(shè)直線方程為:x=my+1,則m∈(-,0)∪(0,).
得y2-4my-4=0.
設(shè)C(x1,y1),D(x2,y2
則y1+y2=4m,y1y2=-4.
所以=×2×|y1-y2|==4,因?yàn)閙2∈(0,).
∴S∈(4,).
點(diǎn)評(píng):本題主要考查直線與圓錐曲線的位置關(guān)系.解決第二問的關(guān)鍵在于把△CDF1面積轉(zhuǎn)化為上下兩個(gè)三角形面積的和,進(jìn)而轉(zhuǎn)化為求|y1-y2|的問題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,曲線C1是以原點(diǎn)O為中心、F1,F(xiàn)2為焦點(diǎn)的橢圓的一部分,曲線C2是以O(shè)為頂點(diǎn)、F2為焦點(diǎn)的拋物線的一部分,A是曲線C1和C2的交點(diǎn)且∠AF2F1為鈍角,若|AF1|=
7
2
,|AF2|=
5
2
,
(1)求曲線C1和C2的方程;
(2)過F2作一條與x軸不垂直的直線,分別與曲線C1、C2依次交于B、C、D、E四點(diǎn),若G為CD中點(diǎn)、H為BE中點(diǎn),問
|BE|•|GF2|
|CD|•|HF2|
是否為定值?若是求出定值;若不是說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,精英家教網(wǎng)曲線C1是以原點(diǎn)O為中心,F(xiàn)1,F(xiàn)2為焦點(diǎn)的橢圓的一部分,曲線C2是以O(shè)為頂點(diǎn),F(xiàn)2(1,0)為焦點(diǎn)的拋物線的一部分,A(
3
2
,
6
)
是曲線C1和C2的交點(diǎn).
(I)求曲線C1和C2所在的橢圓和拋物線的方程;
(II)過F2作一條與x軸不垂直的直線,與曲線C2交于C,D兩點(diǎn),求△CDF1面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,曲線C1是以原點(diǎn)O為中心、F1,F(xiàn)2為焦點(diǎn)的橢圓的一部分,曲線C2是以O(shè)為頂點(diǎn)、F2為焦點(diǎn)的拋物線的一部分,A是曲線C1和C2的交點(diǎn),曲線C1的離心率為
1
3
,若|AF1|=
7
2
,|AF2|=
5
2

(Ⅰ)求曲線C1和C2所在的橢圓和拋物線方程;
(Ⅱ)過F2作一條與x軸不垂直的直線,分別與曲線C1、C2依次交于B、C、D、E四點(diǎn),若G為CD中點(diǎn)、H為BE中點(diǎn),問
|BE|•|GF2|
|CD|•|HF2|
是否為定值?若是,求出定值;若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•孝感模擬)如圖,曲線C1是以原點(diǎn)O為中心,F(xiàn)1,F(xiàn)2為焦點(diǎn)的橢圓的一部分.曲線C2是以O(shè)為頂點(diǎn),F(xiàn)2為焦點(diǎn)的拋物線的一部分,A是曲線C1和C2的交點(diǎn)且∠AF2F1為鈍角,若|AF1|=
7
2
,|AF2|=
5
2

(I)求曲線C1和C2的方程;
(II)設(shè)點(diǎn)C是C2上一點(diǎn),若|CF1|=
2
|CF2|,求△CF1F2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,曲線C1是以原點(diǎn)O為中心,F(xiàn)1、F2為焦點(diǎn)的橢圓的一部分,曲線C2是以原點(diǎn)O為頂點(diǎn),F(xiàn)2為焦點(diǎn)的拋物線的一部分,A(
3
2
,
6
)
是曲線C1和C2的交點(diǎn).
(Ⅰ)求曲線C1和C2所在的橢圓和拋物線的方程;
(Ⅱ)過F2作一條與x軸不垂直的直線,分別與曲線C1、C2依次交于B、C、D、E四點(diǎn),若G為CD中點(diǎn),H為BE中點(diǎn),問
|BE|•|GF2|
|CD|•|HF2|
是否為定值,若是,求出定值;若不是,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案