3.已知函數(shù)f(x)=$\left\{\begin{array}{l}2x,x>0\\ x+1,x≤0\end{array}$,若f(a)=-2,則a的值為( 。
A.-8B.-5C.-3D.2

分析 當(dāng)a>0時,f(a)=2a=-2,不合題意;當(dāng)a≤0時,f(a)=a+1=-2,由此能求出a的值.

解答 解:∵函數(shù)f(x)=$\left\{\begin{array}{l}2x,x>0\\ x+1,x≤0\end{array}$,f(a)=-2,
當(dāng)a>0時,f(a)=2a=-2,解得a=-1,不合題意;
當(dāng)a≤0時,f(a)=a+1=-2,解得a=-3.
綜上,a的值為-3.
故選:C.

點評 本題考查實數(shù)值的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.從“充分不必要條件”、“必要不充分條件”、“充要條件”和“既不充分又不必要條件”中,選出恰當(dāng)?shù)囊环N填空:“a=0”是“函數(shù)f(x)=x2+ax(x∈R)為偶函數(shù)”的充要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)上存在點P,滿足P到y(tǒng)軸和到x軸的距離比為$\sqrt{3}$,則雙曲線離心率的取值范圍是($\frac{2\sqrt{3}}{3}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.從5名男生和3名女生中選5人擔(dān)任5門不同學(xué)科的課代表,分別求符合下列條件的方法數(shù):
(1)女生甲擔(dān)任語文課代表;
(2)男生乙必須是課代表,但不擔(dān)任數(shù)學(xué)課代表.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.如圖,已知拋物線x2=2py(p>0),過點A(0,-1)作直線l與拋物線相交于P、Q兩點,點B的坐標(biāo)為(0,1),連接BP、BQ,設(shè)QB、BP與x軸分別相交于M、N兩點,如果QB斜率與PB的斜率之積為-3,則∠MBN的余弦值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=|x-1|-|2x-3|.
(1)已知f(x)≥m對0≤x≤3恒成立,求實數(shù)m的取值范圍;
(2)已知f(x)的最大值為M,a,b∈R+,a+2b=Mab,求a+2b的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在復(fù)平面內(nèi)復(fù)數(shù)z=$\frac{1+3i}{1+i}$對應(yīng)的點在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.下面的程序運行后的作用是( 。
A.輸出兩個變量A和B的值
B.把變量A的值賦給變量B,并輸出A和B的值
C.把變量B的值賦給變量A,并輸出A和B的值
D.交換兩個變量A和B的值,并輸出交換后的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知數(shù)列{an}的前n項和為Sn,a1=1,an+1=2Sn+1 (n∈N*),等差數(shù)列{bn}中,bn>0 (n∈N*),且b1+b2+b3=15,又a1+b1、a2+b2、a3+b3成等比數(shù)列.則數(shù)列{an•bn}的前n項和Tn為( 。
A.3n-1B.2n+1C.n•3nD.-2n•3n

查看答案和解析>>

同步練習(xí)冊答案