(2007•閔行區(qū)一模)不等式|2x-3|<5的解是
(-1,4)
(-1,4)
分析:把絕對值不等式去掉絕對值,化為-5<2x-3<5,由此求得其解集.
解答:解:不等式|2x-3|<5,即-5<2x-3<5,解得-1<x<4,
故答案為:(-1,4).
點評:本題考查絕對值不等式的解法,關鍵是去掉絕對值,化為與之等價的不等式組來解.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2007•閔行區(qū)一模)已知數(shù)列{an}和{bn}的通項公式分別是an=
an2+2
bn2-n+3
,bn=(1+
1
n
)bn
,其中a、b是實常數(shù).若
lim
n→∞
an=2
,
lim
n→∞
bn=e
1
2
,且a,b,c成等比數(shù)列,則c的值是
1
4
1
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•閔行區(qū)一模)已知函數(shù)f(x)=Asin(ωx+φ)+B(A>0,0<ω<2,|φ|<
π
2
)
的一系列對應值如下表:
x -
π
6
π
3
6
3
11π
6
3
17π
6
y -1 1 3 1 -1 1 3
(1)根據(jù)表格提供的數(shù)據(jù)求函數(shù)y=f(x)的解析式;
(2)(文)當x∈[0,2π]時,求方程f(x)=2B的解.
(3)(理)若對任意的實數(shù)a,函數(shù)y=f(kx)(k>0),x∈(a,a+
3
]
的圖象與直線y=1有且僅有兩個不同的交點,又當x∈[0,
π
3
]
時,方程f(kx)=m恰有兩個不同的解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•閔行區(qū)一模)設等差數(shù)列{an}的前n項和為Sn,若a6+a14=20,則S19=
190
190

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•閔行區(qū)一模)方程9x+3x-2=0的解是
0
0

查看答案和解析>>

同步練習冊答案