1.下列說法不正確的是( 。
A.綜合法是由因?qū)Ч捻樛谱C法
B.分析法是執(zhí)果索因的逆推證法
C.分析法是從要證的結(jié)論出發(fā),尋求使它成立的充分條件
D.綜合法與分析法在同一題的證明中不可能同時(shí)采用

分析 根據(jù)綜合法、分析法的證明方法,即可得出結(jié)論.

解答 解:綜合法是由因?qū)Ч捻樛谱C法、分析法是執(zhí)果索因的逆推證法、分析法是從要證的結(jié)論出發(fā),尋求使它成立的充分條件,即A,B,C正確;
綜合法與分析法在同一題的證明中可能同時(shí)采用,故D不正確.
故選D.

點(diǎn)評(píng) 本題考查綜合法、分析法的證明方法,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若a=sin(sin2013°),b=sin(cos2013°),c=cos(sin2013°),d=cos(cos2013°),則a、b、c、d從小到大的順序是b<a<d<c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如果命題“¬(p∨q)”為假命題,那么( 。
A.p、q中至少一個(gè)有一個(gè)為真命題B.p、q均為假命題
C.p、q均為真命題D.p、q中至多一個(gè)有一個(gè)為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知平面直角坐標(biāo)系xoy內(nèi)兩個(gè)定點(diǎn)A(1,0)、B(4,0),滿足PB=2PA的點(diǎn)P(x,y)形成的曲線記為Γ.
(1)求曲線Γ的方程;
(2)過點(diǎn)B的直線l與曲線Γ相交于C、D兩點(diǎn),當(dāng)△COD的面積最大時(shí),求直線l的方程(O為坐標(biāo)原點(diǎn));
(3)設(shè)曲線Γ分別交x、y軸的正半軸于M、N兩點(diǎn),點(diǎn)Q是曲線Γ位于第三象限內(nèi)一段上的任意一點(diǎn),連結(jié)QN交x軸于點(diǎn)E、連結(jié)QM交y軸于F.求證四邊形MNEF的面積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)a≤3,函數(shù)f(x)=x|x-a|-a.
(1)若f(x)為奇函數(shù),求a的值;
(2)若對(duì)任意的x∈[2,3],f(x)≥0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)f(x)=2x-lnx的單調(diào)遞減區(qū)間為( 。
A.$({-∞,\frac{1}{2}})$B.$({\frac{1}{2},+∞})$C.$({0,\frac{1}{2}})$D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知某漁船在漁港O的南偏東60°方向,距離漁港約160海里的B處出現(xiàn)險(xiǎn)情,此時(shí)在漁港的正上方恰好有一架海事巡邏飛機(jī)A接到漁船的求救信號(hào),海事巡邏飛機(jī)迅速將情況通知了在C處的漁政船并要求其迅速趕往出事地點(diǎn)施救.若海事巡邏飛機(jī)測(cè)得漁船B的俯角為68.20°,測(cè)得漁政船C的俯角為63.43°,且漁政船位于漁船的北偏東60°方向上.
(Ⅰ)計(jì)算漁政船C與漁港O的距離;
(Ⅱ)若漁政船以每小時(shí)25海里的速度直線行駛,能否在3小時(shí)內(nèi)趕到出事地點(diǎn)?
(參考數(shù)據(jù):sin68.20°≈0.93,tan68.20°≈2.50,shin63.43°≈0.90,tan63.43°≈2.00,$\sqrt{11}$≈3.62,$\sqrt{13}$≈3.61)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.定義a⊕b=max{a,b},如:3⊕2=3,2⊕2=2,設(shè)$f(x)=({x^2}-\frac{15}{4})⊕({2^x})$,則函數(shù)f(x)的最小值為$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)$f(x)=(ax+1)lnx-\frac{1}{2}a{x^2}-bx+\frac{e^x}(a,b∈R)$.
(1)若$a=b=\frac{1}{2}$,求函數(shù)$F(x)=f(x)-axlnx-\frac{e^x}$的單調(diào)區(qū)間;
(2)若a=1,b=-1,求證:$f(x)+\frac{1}{2}a{x^2}+bx>lnx-1-2{e^{-2}}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案