【題目】已知集合集合,集合,且集合D滿足.
(1)求實數(shù)a的值.
(2)對集合,其中,定義由中的元素構(gòu)成兩個相應(yīng)的集合:,,其中是有序?qū)崝?shù)對,集合S和T中的元素個數(shù)分別為和,若對任意的,總有,則稱集合具有性質(zhì)P.
①請檢驗集合是否具有性質(zhì)P,并對其中具有性質(zhì)P的集合,寫出相應(yīng)的集合S和T.
②試判斷m和n的大小關(guān)系,并證明你的結(jié)論.
【答案】(1); (2)①見解析;②見解析.
【解析】
(1)由,,得到,代入方程,求得或,檢驗即可求解實數(shù)的值;
(2)①由(1)求得,,檢驗性質(zhì),即可得到結(jié)論;
②根據(jù)不相等,所以與的個數(shù)相同,即可得出結(jié)論.
(1)由題意,集合,集合,
因為,可得,
即是方程的一個根,
即,即,解得或,
當(dāng)時,方程,解得或,此時(不合題意,舍去),
當(dāng)時,方程,解得或,此時(適合題意),
所以;
(2)①由(1)可知,,
此時集合不滿足性質(zhì)P,集合滿足性質(zhì)P,
則,
②與的大小關(guān)系為:,
證明如下:,,
所以不相等,所以與的個數(shù)相同,
所以.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“微信運動”是由騰訊開發(fā)的一個類似計步數(shù)據(jù)庫的公眾賬號.用戶可以通過關(guān)注“微信運動”公眾號查看自己及好友每日行走的步數(shù)、排行榜,也可以與其他用戶進(jìn)行運動量的或點贊.現(xiàn)從某用戶的“微信運動”朋友圈中隨機選取40人,記錄他們某一天的行走步數(shù),并將數(shù)據(jù)整理如下:
步數(shù)/步 | 0~2000 | 2001~5000 | 5001~8000 | 8001~10000 | 10000以上 |
男性人數(shù)/人 | 1 | 6 | 9 | 5 | 4 |
女性人數(shù)/人 | 0 | 3 | 6 | 4 | 2 |
規(guī)定:用戶一天行走的步數(shù)超過8000步時為“運動型”,否則為“懈怠型”.
(1)將這40人中“運動型”用戶的頻率看作隨機抽取1人為“運動型”用戶的概率.從該用戶的“微信運動”朋友圈中隨機抽取4人,記為“運動型”用戶的人數(shù),求和的數(shù)學(xué)期望;
(2)現(xiàn)從這40人中選定8人(男性5人,女性3人),其中男性中“運動型”有3人,“懈怠型”有2人,女性中“運動型”有2人,“懈怠型”有1人.從這8人中任意選取男性3人、女性2人,記選到“運動型”的人數(shù)為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】高鐵、網(wǎng)購、移動支付和共享單車被譽為中國的“新四大發(fā)明”,彰顯出中國式創(chuàng)新的強勁活力.某移動支付公司從我市移動支付用戶中隨機抽取100名進(jìn)行調(diào)查,得到如下數(shù)據(jù):
每周移動支付次數(shù) | 1次 | 2次 | 3次 | 4次 | 5次 | 6次及以上 |
男 | 10 | 8 | 7 | 3 | 2 | 15 |
女 | 5 | 4 | 6 | 4 | 6 | 30 |
合計 | 15 | 12 | 13 | 7 | 8 | 45 |
(Ⅰ)把每周使用移動支付超過3次的用戶稱為“移動支付活躍用戶”,由以上數(shù)據(jù)完成下列列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.005的前提下,認(rèn)為“移動支付活躍用戶”與性別有關(guān)?
移動支付活躍用戶 | 非移動支付活躍用戶 | 總計 | |
男 | |||
女 | |||
總計 | 100 |
(Ⅱ)把每周使用移動支付6次及6次以上的用戶稱為“移動支付達(dá)人”.為了做好調(diào)查工作,決定用分層抽樣的方法從“移動支付達(dá)人”中抽取6人進(jìn)行問卷調(diào)查,再從這6人中選派2人參加活動.求參加活動的2人性別相同的概率?
附公式及表如下:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某聯(lián)歡晚會舉行抽獎活動,舉辦方設(shè)置了甲、乙兩種抽獎方案,方案甲的中獎率為,中獎可以獲得2分;方案乙的中獎率為,中獎可以獲得3分;未中獎則不得分。每人有且只有一次抽獎機會,每次抽獎中獎與否互不影響,晚會結(jié)束后憑分?jǐn)?shù)兌換獎品。
(Ⅰ)若小明選擇方案甲抽獎,小紅選擇方案乙抽獎,記他們的累計得分為,求的概率;
(Ⅱ)若小明、小紅兩人都選擇方案甲或都選擇方案乙進(jìn)行抽獎,問:他們選擇何種方案抽獎,累計得分的數(shù)學(xué)期望較大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,F(xiàn)是拋物線C:x2=2py(p>0)的焦點,M是拋物線C上位于第一象限內(nèi)的任意一點,過M,F(xiàn),O三點的圓的圓心為Q,點Q到拋物線C的準(zhǔn)線的距離為 .
(1)求拋物線C的方程;
(2)是否存在點M,使得直線MQ與拋物線C相切于點M?若存在,求出點M的坐標(biāo);若不存在,說明理由;
(3)若點M的橫坐標(biāo)為 ,直線l:y=kx+ 與拋物線C有兩個不同的交點A,B,l與圓Q有兩個不同的交點D,E,求當(dāng) ≤k≤2時,|AB|2+|DE|2的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4―4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(θ為參數(shù)),直線l的參數(shù)方程為.
(1)若a=1,求C與l的交點坐標(biāo);
(2)若C上的點到l的距離的最大值為,求a.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中,圓M與y軸相切,并且經(jīng)過點,.
(1)求圓M的方程;
(2)過點作圓M的兩條互垂直的弦AC、BD,求四邊形ABCD面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a,b為常數(shù),且a≠0,f(x)=ax2+bx,f(2)=0,方程f(x)=x有兩個相等實數(shù)根.
(1)求函數(shù)f(x)的解析式;
(2)當(dāng)x∈[1,2]時,求f(x)的值域;
(3)若F(x)=f(x)-f(-x),試判斷F(x)的奇偶性,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓 + =1(a>b>0)的左、右頂點分別是A,B,左、右焦點分別是F1 , F2 . 若|AF1|,|F1F2|,|F1B|成等比數(shù)列,則此橢圓的離心率為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com