【題目】已知圓,圓心為,定點, 為圓上一點,線段上一點滿足,直線上一點,滿足

(Ⅰ)求點的軌跡的方程;

(Ⅱ)為坐標原點, 是以為直徑的圓,直線相切,并與軌跡交于不同的兩點.當且滿足時,求面積的取值范圍.

【答案】(Ⅰ);(Ⅱ) .

【解析】試題分析(Ⅰ)分析題意可得點滿足的幾何條件,根據(jù)橢圓的定義可得軌跡,從而可求得軌跡方程;(Ⅱ)先由直線相切得到,將直線方程與橢圓方程聯(lián)立,并結(jié)合一元二次方程根與系數(shù)的關(guān)系可得,由,進一步得到k的范圍,最后根據(jù)三角形面積公式并結(jié)合函數(shù)的單調(diào)性求的取值范圍。

試題解析

(Ⅰ)∵

為線段中點

為線段的中垂線

∴由橢圓的定義可知的軌跡是以為焦點,長軸長為的橢圓,

設(shè)橢圓的標準方程為,

,

。

∴點的軌跡的方程為。

(Ⅱ)∵圓與直線相切,

,即,

,消去.

∵直線與橢圓交于兩個不同點,

代入上式,可得,

設(shè) ,

,

,

,解得.滿足。

設(shè),則.

,

面積的取值范圍為

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】若對任意的,存在實數(shù),使恒成立,則實數(shù)的最大值為__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某花店每天以每枝5元的價格從農(nóng)場購進若干枝玫瑰花,然后以每枝10元的價格出售.如果當天賣不完,剩下的玫瑰花作垃圾處理.

1)若花店一天購進17枝玫瑰花,求當天的利潤y(單位:元)關(guān)于當天需求量n(單位:枝,n∈N)的函數(shù)解析式;

2)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得下表:

日需求量n

14

15

16

17

18

19

20

頻數(shù)

10

20

16

16

15

13

10

假設(shè)花店在這100天內(nèi)每天購進17枝玫瑰花,求這100天的日利潤(單位:元)的平均數(shù);

若花店一天購進17枝玫瑰花,以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率,求當天的利潤不少于75元的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線Cy2=2px過點P(1,1).過點(0, )作直線l與拋物線C交于不同的兩點M,N,過點Mx軸的垂線分別與直線OP,ON交于點AB,其中O為原點.

(Ⅰ)求拋物線C的方程,并求其焦點坐標和準線方程;

(Ⅱ)求證:A為線段BM的中點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線C,點x軸的正半軸上,過點M的直線與拋物線C相交于A,B兩點,O為坐標原點.

1)若,且直線的斜率為1,求以AB為直徑的圓的方程;

2)是否存在定點M,使得不論直線繞點M如何轉(zhuǎn)動, 恒為定值?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)點,動圓經(jīng)過點且和直線相切,記動圓的圓心的軌跡為曲線.

(1)求曲線的方程;

(2)設(shè)曲線上一點的橫坐標為,過的直線交于一點,交軸于點,過點的垂線交于另一點,若的切線,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,且,設(shè)命題p:函數(shù)上單調(diào)遞減;命題q:函數(shù) 上為增函數(shù),

1)若“pq”為真,求實數(shù)c的取值范圍

2)若“pq”為假,“pq”為真,求實數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】 如圖,在四棱錐P﹣ABCD中,側(cè)面PAD底面ABCD,側(cè)棱PA=PD= ,PA⊥PD,底面ABCD為直角梯形,其中BC∥AD,AB⊥AD,AB=BC=1,O為AD中點.

(1) 求直線PB與平面POC所成角的余弦值;

(2)線段上是否存在一點,使得二面角的余弦值為?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓、拋物線的焦點均在軸上, 的中心和的頂點均為原點,平面上四個點, , , 中有兩個點在橢圓上,另外兩個點在拋物線上.

(1)求的標準方程;

(2)是否存在直線滿足以下條件:①過的焦點;②與交于兩點,且以為直徑的圓經(jīng)過原點.若存在,求出直線的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案