【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且滿足Sn=2an+n(n∈N*).
(1)求證數(shù)列{an﹣1}是等比數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=log2(﹣an+1),求數(shù)列{ }的前n項(xiàng)和Tn .
【答案】
(1)解:∵Sn=2an+n(n∈N+)
∴Sn﹣1=2an﹣1+n﹣1(n≥2)
兩式相減得:an=2an﹣1﹣1,
變形可得:an﹣1=2(an﹣1﹣1),
又∵a1=2a1+1,即a1﹣1=﹣1﹣2=﹣2,
∴數(shù)列{an﹣1}是首項(xiàng)為﹣2、公比為2的等比數(shù)列,
∴數(shù)列an﹣1=﹣22n﹣1=﹣2n,an=﹣2n+1
(2)解:∵bn=log2(﹣an+1)=log22n=n.
∴ =
∴Tn=
=
= ﹣
【解析】(1)通過Sn=2an+n(n∈N+)與Sn﹣1=2an﹣1+n﹣1(n≥2)作差、變形可知an﹣1=2(an﹣1﹣1),進(jìn)而計(jì)算即得結(jié)論.(2)由bn=log2(﹣an+1)=log22n=n.得 = ,累加即可求解.
【考點(diǎn)精析】掌握等比數(shù)列的通項(xiàng)公式(及其變式)和數(shù)列的前n項(xiàng)和是解答本題的根本,需要知道通項(xiàng)公式:;數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}的通項(xiàng)公式為an=2n﹣1(n∈N*),且a2 , a5分別是等比數(shù)列{bn}的第二項(xiàng)和第三項(xiàng),設(shè)數(shù)列{cn}滿足cn= ,{cn}的前n項(xiàng)和為Sn
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)是否存在m∈N* , 使得Sm=2017,并說明理由
(3)求Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn . 若對(duì)任意正整數(shù)n,總存在正整數(shù)m,使得Sn=am , 則稱{an}是“H數(shù)列”.
(1)若數(shù)列{an}的前n項(xiàng)和Sn=2n(n∈N*),證明:{an}是“H數(shù)列”;
(2)設(shè){an}是等差數(shù)列,其首項(xiàng)a1=1,公差d<0.若{an}是“H數(shù)列”,求d的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)P是圓F1:(x﹣1)2+y2=8上任意一點(diǎn),點(diǎn)F2與點(diǎn)F1關(guān)于原點(diǎn)對(duì)稱,線段PF2的垂直平分線分別與PF1,PF2交于M,N兩點(diǎn).
(1)求點(diǎn)M的軌跡C的方程;
(2)過點(diǎn)G(0, )的動(dòng)直線l與點(diǎn)的軌跡C交于A,B兩點(diǎn),在y軸上是否存在定點(diǎn)Q,使以AB為直徑的圓恒過這個(gè)點(diǎn)?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》中有這樣一則問題:“今有良馬與弩馬發(fā)長(zhǎng)安,至齊,齊去長(zhǎng)安三千里,良馬初日行一百九十三里,日增一十三里;弩馬初日行九十七里,日減半里,良馬先至齊,復(fù)還迎弩馬.”則現(xiàn)有如下說法:
①弩馬第九日走了九十三里路;
②良馬前五日共走了一千零九十五里路;
③良馬和弩馬相遇時(shí),良馬走了二十一日.
則以上說法錯(cuò)誤的個(gè)數(shù)是( )個(gè)
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,a,b,c分別為內(nèi)角A,B,C的對(duì)邊,且2asinA=(2b+c)sinB+(2c+b)sinC.
(1)求A的大;
(2)求sinB+sinC的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖象在處的切線方程為,其中是自然對(duì)數(shù)的底數(shù).
(1)若對(duì)任意的,都有成立,求實(shí)數(shù)的取值范圍;
(2)若函數(shù)的兩個(gè)零點(diǎn)為,試判斷的正負(fù),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】要得到函數(shù)y= cosx的圖象,需將函數(shù)y= sin(2x+ )的圖象上所有的點(diǎn)的變化正確的是( )
A.橫坐標(biāo)縮短到原來的 倍(縱坐標(biāo)不變),再向左平行移動(dòng) 個(gè)單位長(zhǎng)度
B.橫坐標(biāo)縮短到原來的 倍(縱坐標(biāo)不變),再向右平行移動(dòng) 個(gè)單位長(zhǎng)度
C.橫坐標(biāo)伸長(zhǎng)到原來的2倍(縱坐標(biāo)不變),再向左平行移動(dòng) 個(gè)單位長(zhǎng)度
D.橫坐標(biāo)伸長(zhǎng)到原來的2倍(縱坐標(biāo)不變),再向右平行移動(dòng) 個(gè)單位長(zhǎng)度
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com