【題目】已知圓C:x2+(y﹣1)2=9,直線l:x﹣my+m﹣2=0,且直線l與圓C相交于A、B兩點. (Ⅰ)若|AB|=4 ,求直線l的傾斜角;
(Ⅱ)若點P(2,1)滿足 = ,求直線l的方程.

【答案】解:(Ⅰ)若|AB|=4 ,則圓心到直線的距離為 =1, ∴ =1,∴m= ,
∴直線的斜率為 ,
∴直線l的傾斜角為30°或150°;
(Ⅱ)若點P(2,1)滿足 = ,則P為AB的中點,
∵kCP=0,∴直線l的斜率不存在,
∴直線l的方程為x=2.
【解析】(Ⅰ)若|AB|=4 ,則圓心到直線的距離為 =1,利用點到直線的距離公式,建立方程,即可求直線l的傾斜角;(Ⅱ)若點P(2,1)滿足 = ,則P為AB的中點,求出直線的斜率,即可求直線l的方程.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知關于x的不等式x2﹣ax﹣2>0的解集為{x|x<﹣1或x>b}(b>﹣1).
(1)求a,b的值;
(2)當m>﹣ 時,解關于x的不等式(mx+a)(x﹣b)>0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若x>0,則函數(shù) 與y2=logax(a>0,且a≠1)在同一坐標系上的部分圖象只可能是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,直線l的參數(shù)方程 (t為參數(shù)),以坐標原點為極點,x軸正半軸為極軸建立極坐標系,曲線C的極坐標方程為:ρ=4cosθ.
(1)把直線l的參數(shù)方程化為極坐標方程,把曲線C的極坐標方程化為普通方程;
(2)求直線l與曲線C交點的極坐標(ρ≥0,0≤θ<2π).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,則輸出結果s的值為(
A.﹣
B.﹣1
C.
D.0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直三棱柱ABC﹣A1B1C1中,∠ACB=90°,AA1=2,AC=BC=1,則異面直線A1B與AC所成角的余弦值是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某百貨公司1~6月份的銷售量x與利潤y的統(tǒng)計數(shù)據(jù)如表:

月份

1

2

3

4

5

6

銷售量x(萬件)

10

11

13

12

8

6

利潤y(萬元)

22

25

29

26

16

12

(參考公式: = )=
(1)根據(jù)2~5月份的統(tǒng)計數(shù)據(jù),求出y關于x的回歸直線方程
(2)若由回歸直線方程得到的估計數(shù)據(jù)與剩下的檢驗數(shù)據(jù)的誤差均不超過2萬元,則認為得到的回歸直線方程是理想的,試問所得回歸直線方程是否理想?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)對任意實數(shù)x,y均有f(x)=f( )+f( ).當x>0時,f(x)>0
(1)判斷函數(shù)f(x)在R上的單調性并證明;
(2)設函數(shù)g(x)與函數(shù)f(x)的奇偶性相同,當x≥0時,g(x)=|x﹣m|﹣m(m>0),若對任意x∈R,不等式g(x﹣1)≤g(x)恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=ln ,則f(x)是(
A.奇函數(shù),且在(0,+∞)上單調遞減
B.奇函數(shù),且在(0,+∞)上單凋遞增
C.偶函數(shù),且在(0,+∞)上單調遞減
D.偶函數(shù),且在(0,+∞)上單凋遞增

查看答案和解析>>

同步練習冊答案