【題目】下列各組函數(shù)中不表示同一函數(shù)的是( )
A.f(x)=lgx2 , g(x)=2lg|x|
B.f(x)=x,g(x)=
C.f(x)= ,g(x)=
D.f(x)=|x+1|,g(x)=
【答案】C
【解析】解:對于A:f(x)=lgx2=2lg|x|的定義域為{x|x≠0},g(x)=2lg|x|的定義域為{x|x≠0},定義域相同,對應關系也相同,∴是同一函數(shù);
對于B:f(x)=x的定義域為R,g(x)= =x的定義域為R,定義域相同,對應關系也相同,∴是同一函數(shù);
對于C:f(x)= 的定義域為{x|x≥2或x≤﹣2},而g(x)= 的定義域為{x|x≥2},定義域不同,∴不是同一函數(shù);
對于D:f(x)=|x+1|= 的定義域為R,g(x)= 的定義域為R,對應關系也相同,∴是同一函數(shù);
故選:C.
【考點精析】解答此題的關鍵在于理解判斷兩個函數(shù)是否為同一函數(shù)的相關知識,掌握只有定義域和對應法則二者完全相同的函數(shù)才是同一函數(shù).
科目:高中數(shù)學 來源: 題型:
【題目】今年入秋以來,某市多有霧霾天氣,空氣污染較為嚴重.市環(huán)保研究所對近期每天的空氣污染情況進行調査研究后發(fā)現(xiàn),每一天中空氣污染指數(shù)與f(x)時刻x(時)的函數(shù)關系為f(x)=|log25(x+1)﹣a|+2a+1,x∈[0,24],其中a為空氣治理調節(jié)參數(shù),且a∈(0,1).
(1)若a= ,求一天中哪個時刻該市的空氣污染指數(shù)最低;
(2)規(guī)定每天中f(x)的最大值作為當天的空氣污染指數(shù),要使該市每天的空氣污染指數(shù)不超過3,則調節(jié)參數(shù)a應控制在什么范圍內?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設橢圓C: 的離心率e= ,左頂點M到直線 =1的距離d= ,O為坐標原點.
(1)求橢圓C的方程;
(2)設直線l與橢圓C相交于A,B兩點,若以AB為直徑的圓經(jīng)過坐標原點,證明:點O到直線AB的距離為定值;
(3)在(2)的條件下,試求△AOB的面積S的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓()離心率為,過點的橢圓的兩條切線相互垂直.
(1)求此橢圓的方程;
(2)若存在過點的直線交橢圓于兩點,使得(為右焦點),求的范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知⊙C:(x﹣1)2+(y﹣2)2=25,直線l:(2m+1)x+(m+1)y﹣7m﹣4=0(m∈R)
(1)求證:對任意m∈R,直線l與⊙C恒有兩個交點;
(2)求直線l被⊙C截得的線段的最短長度,及此時直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知四棱錐P﹣ABCD的底面為直角梯形,AB∥DC,∠DAB=90°,PA⊥底面 ABCD,且PA=AD=DB= ,AB=1,M是PB的中點.
(1)證明:面PAD⊥面PCD;
(2)求AC與PB所成的角;
(3)求平面AMC與平面BMC所成二面角的大。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義運算為:a*b= ,如1*2=1,則函數(shù)f(x)=|2x*2﹣x﹣1|的值域為( )
A.[0,1]
B.[0,1)
C.[0,+∞)
D.[1,+∞)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】各項均為正數(shù)的數(shù)列{an}中,a1=1,Sn是數(shù)列{an}的前n項和,對任意n∈N* , 有2Sn=2pan2+pan﹣p(p∈R)
(1)求常數(shù)p的值;
(2)求數(shù)列{an}的通項公式;
(3)記bn= ,求數(shù)列{bn}的前n項和T.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com