【題目】為了解某養(yǎng)殖產(chǎn)品在某段時間內(nèi)的生長情況,在該批產(chǎn)品中隨機抽取了120件樣本,測量其增長長度(單位:),經(jīng)統(tǒng)計其增長長度均在區(qū)間內(nèi),將其按,,,,,分成6組,制成頻率分布直方圖,如圖所示其中增長長度為及以上的產(chǎn)品為優(yōu)質(zhì)產(chǎn)品.
(1)求圖中的值;
(2)已知這120件產(chǎn)品來自于,B兩個試驗區(qū),部分數(shù)據(jù)如下列聯(lián)表:
將聯(lián)表補充完整,并判斷是否有99.99%的把握認為優(yōu)質(zhì)產(chǎn)品與A,B兩個試驗區(qū)有關(guān)系,并說明理由;
下面的臨界值表僅供參考:
(參考公式:,其中)
(3)以樣本的頻率代表產(chǎn)品的概率,從這批產(chǎn)品中隨機抽取4件進行分析研究,計算抽取的這4件產(chǎn)品中含優(yōu)質(zhì)產(chǎn)品的件數(shù)的分布列和數(shù)學期望E(X).
【答案】(1)0.025;(2)見解析;(3)見解析
【解析】
(1)根據(jù)面積之和為1,列出關(guān)系式,解出a的值. (2)首先根據(jù)頻率分布直方圖中的數(shù)據(jù)計算A,B這兩個試驗區(qū)優(yōu)質(zhì)產(chǎn)品、非優(yōu)質(zhì)產(chǎn)品的總和,然后根據(jù)表格填入數(shù)據(jù),再根據(jù)公式計算即可.(3)以樣本頻率代表概率,則屬于二項分布,利用二項分布的概率公式計算分布列和數(shù)學期望即可.
(1)根據(jù)頻率分布直方圖數(shù)據(jù),得:
,
解得.
(2)根據(jù)頻率分布直方圖得:
樣本中優(yōu)質(zhì)產(chǎn)品有,
列聯(lián)表如下表所示:
試驗區(qū) | 試驗區(qū) | 合計 | |
優(yōu)質(zhì)產(chǎn)品 | 10 | 20 | 30 |
非優(yōu)質(zhì)產(chǎn)品 | 60 | 30 | 90 |
合計 | 70 | 50 | 120 |
∴ ,
∴沒有的把握認為優(yōu)質(zhì)產(chǎn)品與,兩個試驗區(qū)有關(guān)系.
(3)由已知從這批產(chǎn)品中隨機抽取一件為優(yōu)質(zhì)產(chǎn)品的概率是,
隨機抽取4件中含有優(yōu)質(zhì)產(chǎn)品的件數(shù)X的可能取值為0,1,2,3,4,且,
∴,
,
,
,
,
∴的分布列為:
0 | 1 | 2 | 3 | 4 | |
E(X)
科目:高中數(shù)學 來源: 題型:
【題目】某廠生產(chǎn)某產(chǎn)品的年固定成本為250萬元,每生產(chǎn)千件,需另投入成本(萬元),若年產(chǎn)量不足千件, 的圖像是如圖的拋物線,此時的解集為,且的最小值是,若年產(chǎn)量不小于千件, ,每千件商品售價為50萬元,通過市場分析,該廠生產(chǎn)的商品能全部售完;
(1)寫出年利潤(萬元)關(guān)于年產(chǎn)量(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時,該廠在這一商品的生產(chǎn)中所獲利潤最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率,連接橢圓的四個頂點得到的菱形的面積為4。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法中正確的個數(shù)是( )
①命題:“、,若,則”,用反證法證明時應假設(shè)或;
②若,則、中至少有一個大于;
③若、、、、成等比數(shù)列,則;
④命題:“,使得”的否定形式是:“,總有”.
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定義在的奇函數(shù)滿足:①;②對任意均有;③對任意,均有.
(1)求的值;
(2)利用定義法證明在上單調(diào)遞減;
(3)若對任意,恒有,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知下表為函數(shù)部分自変量取值及其對應函數(shù)值,為了便于研究,相關(guān)函數(shù)值取非整數(shù)值時,取值精確到0.01.
0.61 | -0.59 | -0.56 | -0.35 | 0 | 0.26 | 0.42 | 1.57 | 3.27 | |
0.07 | 0.02 | -0.03 | -0.22 | 0 | 0.21 | 0.20 | -10.04 | -101.63 |
據(jù)表中數(shù)據(jù),研究該函數(shù)的一些性質(zhì);
(1)判斷函數(shù)的奇偶性,并證明;
(2)判斷函數(shù)在區(qū)間[0.55,0.6]上是否存在零點,并說明理由;
(3)判斷的正負,并證明函數(shù)在上是單調(diào)遞減函數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com