下列五個(gè)命題中:

①若數(shù)列{an}的前n項(xiàng)和為Sn=3n-2,則該數(shù)列為等比數(shù)列;

②若m≥-1,則函數(shù)的值域?yàn)镽;

③函數(shù)y=f(2+x)與函數(shù)y=f(2-x)的圖象關(guān)于直線x=2對(duì)稱;

④已知向量的夾角為鈍角,則實(shí)數(shù)λ的取值范圍是

⑤已知函數(shù)f(x)=(2x-x2)ex,則當(dāng)選時(shí)f(x)取得最大值

其中正確命題的序號(hào)為________

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列五個(gè)命題中,正確的有幾個(gè)?(  )
①函數(shù)y=
x2
y=(
x
)2
是同一函數(shù);
②若集合A={x|kx2+4x+4=0}中只有一個(gè)元素,則k=1;
③函數(shù)f(x)=
1-x2
x
是奇函數(shù);
④函數(shù)y=
1
1-x
在x∈(-∞,0)上是增函數(shù);
⑤定義在R上的奇函數(shù)f(x)有f(x)•f(-x)≤0.
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在下列五個(gè)命題中,
①函數(shù)y=sin(
2
-2x)是偶函數(shù);
②已知cosα=
1
2
,且α∈[0,2π],則α的取值集合是{
π
3
};
③直線x=
π
8
是函數(shù)y=sin(2x+
4
)圖象的一條對(duì)稱軸;
④△ABC中,若cosA>cosB,則A<B;  ⑤函數(shù)y=|cos2x+
1
2
|的周期是
π
2
;
把你認(rèn)為正確的命題的序號(hào)都填在橫線上
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列五個(gè)命題中,正確的命題的序號(hào)是
①④
①④

①函數(shù)y=tan
x
2
的圖象的對(duì)稱中心是(kπ,0),k∈Z;
②f(x)在(a,b)上連續(xù),x0∈(a,b)且f(x0)=0 則f(a)f(b)<0;
③函數(shù)y=3sin(2x+
π
3
)的圖象可由函數(shù)y=3sin2x的圖象向右平移
π
3
個(gè)單位得到;
④f(x)在R上的導(dǎo)數(shù)f′(x),且xf′(x)-f(x)<0,則
f(2)
2
<f(1)
;
⑤函數(shù)y=ln(1+2cos2x)的遞減區(qū)間是[kπ,kπ+
π
4
](k∈Z).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在下列五個(gè)命題中:
①若a=3
2
,則a⊆{x}x>2
3
};
②若P={x|0≤x≤4},Q={ y|0≤y≤2},則對(duì)應(yīng)y=
3x
2
不是從P到Q的映射;
f(x)=
3
x
在(-∞,0)∪(0,+∞)上為減函數(shù);
④若函數(shù)y=f(x-1)的圖象經(jīng)過(guò)點(diǎn)(4,1),則函數(shù)y=f-1(x)的圖象必經(jīng)過(guò)點(diǎn)(1,3);
⑤命題“對(duì)任意的x∈R,x3-x2+1≤0”的否定是“不存在x∈R,x3-x2+1≤0”.
其中所有不正確的命題的序號(hào)為
①③⑤
①③⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列五個(gè)命題中正確命題的個(gè)數(shù)是( 。
(1)對(duì)于命題P:?x∈R,使得x2+x+1<0,則¬P:?x∈R,均有x2+x+1>0;
(2)m=3是直線(m+3)x+my-2=0與直線mx-6y+5=0互相垂直的充要條件;
(3)已知回歸直線的斜率的估計(jì)值為1.23,樣本點(diǎn)的中心為(4,5),則回歸直線方程為
y
=1.23x+0.08;
(4)若實(shí)數(shù)x,y∈[-1,1],則滿足x2+y2≥1的概率為
π
4
;
(5)曲線y=x2與y=x所圍成圖形的面積是S=∫
 
1
0
(x-x2)dx.

查看答案和解析>>

同步練習(xí)冊(cè)答案