已知c>0,設(shè)P:函數(shù)y=cx在R上單調(diào)遞減,Q:不等式x+|x-2c|>1的解集為R,如果P和Q有且僅有一個(gè)正確,求c的取值范圍.?

解析:函數(shù)y=cx在R上單調(diào)遞減0<c<1.不等式x+|x-2c|>1的解集為R函數(shù)y=x+|x-2c|在R上恒大于1.

因?yàn)閤+|x-2c|=,所以函數(shù)y=x+|x-2c|在R上最小值為2c,所以不等式x+|x-2c|>1的解集為R2c>1.若P正確,且Q不正確,則0<c≤.若P不正確,且Q正確,則c≥1,所以c的取值范圍為(0, ]∪[1,+∞).

溫馨提示:本題主要考查函數(shù)的性質(zhì)、絕對值不等式的解法和簡易邏輯等.解函數(shù)不等式在R上恒成立問題,通常都要先找出函數(shù)f(x)在R上的最大值或最小值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知c>0,設(shè)P:函數(shù)y=cx在R上單調(diào)遞減,Q:不等式x+|x-2c|>1的解集為R.

如果P和Q有且僅有一個(gè)正確,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知c>0,設(shè)P:函數(shù)y=cx在R上單調(diào)遞減.Q:不等式x+|x-2c|>1的解集為R.如果PQ有且僅有一個(gè)正確,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知c>0,設(shè)P:函數(shù)y=cx在R上單調(diào)遞減.Q:不等式x+|x-2c|>1的解集為R.如果P和Q有且僅有一個(gè)正確,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知c>0,設(shè)p:函數(shù)y=cx在R上遞減;q:不等式x+|x-2c|>1的解集為R,如果“p或q”為真,且“p且q”為假,求c的范圍.

查看答案和解析>>

同步練習(xí)冊答案