16.在等差數(shù)列中{an}中,a2=2,a4+a5=12,則a7=( 。
A.5B.8C.10D.14

分析 由等差數(shù)列中{an}的性質(zhì)可得:a2+a7=a4+a5,解出即可得出.

解答 解:由等差數(shù)列中{an}的性質(zhì)可得:a2+a7=a4+a5=12,
∴a7=12-2=10.
故選:C.

點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng)公式及其性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知{an}為等差數(shù)列,且an+1+an+2=3n+5(n∈N*),則a1等于( 。
A.$\frac{5}{4}$B.$\frac{5}{2}$C.$\frac{7}{2}$D.$\frac{7}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知f(x)=loga(8-3ax)在[-1,2]上單調(diào)減函數(shù),則實(shí)數(shù)a的取值范圍為1<a<$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.不等式$\frac{2x-1}{x+2}≤3$的解集為(-∞,-7]∪(-2,+∞)..

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.若α是第二象限角,那么$\frac{α}{2}$和2α都不是(  )
A.第一象限角B.第二象限角C.第三象限角D.第四象限角

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.四個(gè)事件:①當(dāng)x∈R時(shí),方程x2+1=0無(wú)實(shí)數(shù)解;②若x∈R,且x≠0,則x>$\frac{1}{x}$;③函數(shù)y=$\frac{1}{x}$在其定義域上是增函數(shù);④若a2+b2=0,a,b∈R,則a=b=0,隨機(jī)事件是②.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知?jiǎng)狱c(diǎn)P(x,y)在橢圓C:$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1上,F(xiàn)為橢圓C的右焦點(diǎn),若點(diǎn)M滿足|$\overrightarrow{MF}$|=1且$\overrightarrow{PM}$•$\overrightarrow{MF}$=0,則|$\overrightarrow{PM}$|的最小值為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.若x,y滿足約束條件$\left\{\begin{array}{l}x≤2\\ y≤2\\ x+y≥1\end{array}\right.$,則$z=\frac{y}{x+1}$的取值范圍是[-$\frac{1}{3}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知直線y=2x+2上的動(dòng)點(diǎn)(an,an+1),n∈N與定點(diǎn)(2,-3)所成直線的斜率為bn,且a1=3,
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)證明:$\frac{1}{{{b_1}-2}}+\frac{1}{{{b_2}-2}}+\frac{1}{{{b_3}-2}}+…+\frac{1}{{{b_n}-2}}<{2^n}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案