如圖,△PAB所在的平面α和四邊形ABCD所在的平面β垂直,且AD⊥α,BC⊥α,AD=4,BC=8,AB=12,∠APD=∠CPB=30°,則點(diǎn)P到平面β的距離是(    )

A.4             B.8            C.8             D.2

答案:A  【解析】本題考查考生分析問題、解決問題的能力以及空間想象能力、等價(jià)轉(zhuǎn)化思想、空間線面關(guān)系的計(jì)算等.因?yàn)槠矫姒痢挺?AD⊥α,∴DA⊥AP,同理CB⊥PB.即三角形ADP,CBP都是直角三角形,可以解得AP=4,PB=8,在三角形APB中運(yùn)用余弦定理,可解得∠APB=,過點(diǎn)P作PH⊥β,則PH為所求.

在三角形APB中運(yùn)用面積公式AP·PB·sin·12·PHPH=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,△PAB所在的平面α和梯形ABCD所在的平面β互相垂直,且AD⊥α,AD=4,BC=8,AB=6,若tan∠ADP+2tan∠BCP=10,則點(diǎn)P在平面α內(nèi)的軌跡是( 。
A、圓的一部分B、橢圓的一部分C、雙曲線的一部分D、拋物線的一部分

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,△PAB所在的平面α和四邊形ABCD所在的平面β互相垂直,且AD⊥α,BC⊥α,AD=4,BC=8,AB=6,若tan∠ADP+2tan∠BCP=10,則點(diǎn)P在平面a內(nèi)的軌跡是( 。
A、圓的一部分B、橢圓的一部分C、雙曲線的一部分D、拋物線的一部分

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,△PAB所在的平面α和四邊形ABCD所在的平面β垂直,且AD⊥α,BC⊥α,AD=4,BC=8,AB=6,∠APD=∠CPB,則點(diǎn)P在平面α內(nèi)的軌跡是(  )
A、圓的一部分B、橢圓的一部分C、雙曲線的一部分D、拋物線的一部分

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,△PAB所在的平面α和四邊形ABCD所在的平面β垂直,且AD⊥α,BC⊥α,AD=4,BC=8,AB=6,∠APD=∠CPB,則點(diǎn)P在平面α內(nèi)的軌跡是    (    )

A.圓的一部分                           B.橢圓的一部分

C.雙曲線的一部分                       D.拋物線的一部分

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省高三上學(xué)期期中考試數(shù)學(xué)理卷 題型:選擇題

如圖,△PAB所在的平面α和四邊形ABCD所在

的平面β互相垂直,且,AD=4,

BC=8,AB=6,若

則點(diǎn)P在平面內(nèi)的軌跡是           (       )

    A.圓的一部分     B.橢圓的一部分

    C.雙曲線的一部分 D.拋物線的一部分

 

 

查看答案和解析>>

同步練習(xí)冊答案