已知函數(shù),當(dāng)時(shí),恒有
(1)求證:是奇函數(shù);
(2)如果為正實(shí)數(shù),,并且,試求在區(qū)間[-2,6]上的最值.

(1)證明見(jiàn)解析;(2)最大值為1,最小值為-3..

解析試題分析:解題思路:(1)利用奇函數(shù)的定義進(jìn)行證明;(2)先證明的單調(diào)性,再求在的最值.
規(guī)律總結(jié):(1)證明函數(shù)奇偶性的步驟:①驗(yàn)證函數(shù)定義域是否關(guān)于原點(diǎn)對(duì)稱,②判斷的關(guān)系,③下結(jié)論;(2)先利用函數(shù)單調(diào)性的定義證明函數(shù)的單調(diào)性,再根據(jù)單調(diào)性求最值.注意點(diǎn):判定或證明函數(shù)的奇偶性時(shí),一定不要忘記驗(yàn)證函數(shù)的定義域是否關(guān)于原點(diǎn)對(duì)稱.
試題解析: (1)函數(shù)定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/14/9/xvlks1.png" style="vertical-align:middle;" />,其定義域關(guān)于原點(diǎn)對(duì)稱,
,令
,令
,得
,得為奇函數(shù).
(2)設(shè)

,,,即上單調(diào)遞減.
為最大值,為最小值.
,

在區(qū)間上的最大值為1,最小值為-3.
考點(diǎn):1.函數(shù)的奇偶性;2.函數(shù)的最值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)的圖象上一點(diǎn)P(1,0),且在P點(diǎn)處的切線與直線平行.
(1)求函數(shù)的解析式;
(2)求函數(shù)在區(qū)間[0,t](0<t<3)上的最大值和最小值;
(3)在(1)的結(jié)論下,關(guān)于x的方程在區(qū)間[1,3]上恰有兩個(gè)相異的實(shí)根,求實(shí)數(shù)c的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)滿足,,且當(dāng)時(shí),.
(1)證明:函數(shù)是周期函數(shù);(2)若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知是不全為的實(shí)數(shù),函數(shù),方程有實(shí)根,且的實(shí)數(shù)根都是的根,反之,的實(shí)數(shù)根都是的根.
(1)求的值;(2)若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知是定義在上的奇函數(shù),當(dāng)時(shí),
(1)求;
(2)求的解析式;
(3)若,求區(qū)間

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè),函數(shù)的最大值是14,求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

規(guī)定[t]為不超過(guò)t的最大整數(shù),例如[12.6]=12,[-3.5]=-4,對(duì)任意實(shí)數(shù)x,令f1(x)=[4x],g(x)=4x-[4x],進(jìn)一步令f2(x)=f1[g(x)].
(1)若x=,分別求f1(x)和f2(x);
(2)若f1(x)=1,f2(x)=3同時(shí)滿足,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題


函數(shù)的最小值為             

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

的反函數(shù)為,則方程的解           

查看答案和解析>>

同步練習(xí)冊(cè)答案