設曲線)在點處的切線與軸交點的橫坐標為,則    .
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:填空題

已知圓的半徑為定長,是圓所在平面內(nèi)一定點,是圓上任意一點,線段的垂直平分線與直線相交于點,當在圓上運動時,點的軌跡可能是下列圖形中的:               .(填寫所有可能圖形的序號)
①點;②直線;③圓;④拋物線;⑤橢圓;⑥雙曲線;⑦雙曲線的一支.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)
設橢圓的離心率,右焦點到直線的距離為坐標原點.
(I)求橢圓的方程;
(II)過點作兩條互相垂直的射線,與橢圓分別交于兩點,證明點到直
的距離為定值,并求弦長度的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)
已知橢圓的短軸長為,且與拋物線有共同的焦點,橢圓的左頂點為A,右頂點為,點是橢圓上位于軸上方的動點,直線,與直線分別交于兩點.
(I)求橢圓的方程;
(Ⅱ)求線段的長度的最小值;
(Ⅲ)在線段的長度取得最小值時,橢圓上是否存在一點,使得的面積為,若存在求出點的坐標,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分16分;第(1)小題5分,第(2)小題5分,第(3)小題6分)
、為坐標平面上的點,直線為坐標原點)與拋物線交于點(異于).
(1)      若對任意,點在拋物線上,試問當為何值時,點在某一圓上,并求出該圓方程;
(2)      若點在橢圓上,試問:點能否在某一雙曲線上,若能,求出該雙曲線方程,若不能,說明理由;
(3)      對(1)中點所在圓方程,設、是圓上兩點,且滿足,試問:是否存在一個定圓,使直線恒與圓相切.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知中,頂點,的平分線的方程是.求頂點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

曲線在點(0,1)處的切線方程為              。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
已知點A(15,0),點P是圓上的動點,M為線段PA的中點,當點P在圓上運動時,求動點M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在平面直角坐標系中,由x軸的正半軸、y軸的正半軸、曲線以及該曲線在處的切線所圍成圖形的面積是
A.B.C.D.

查看答案和解析>>

同步練習冊答案