已知方程|x-2|-kx+1=0有兩個不相等的實(shí)根,則實(shí)數(shù)k的取值范圍是(  )
A、(0,
1
2
B、(
1
2
,1)
C、(1,2)
D、(2,+∞)
考點(diǎn):根的存在性及根的個數(shù)判斷
專題:
分析:畫出函數(shù)f(x)、g(x)的圖象,由題意可得函數(shù)f(x)的圖象(藍(lán)線)和函數(shù)g(x)的圖象(紅線)有兩個交點(diǎn),數(shù)形結(jié)合求得k的范圍.
解答: 解:令f(x)=|x-2|+1,g(x)=kx,
將方程|x-2|-kx+1=0有兩個不相等的實(shí)根,
轉(zhuǎn)化為函數(shù)f(x),g(x)有2個交點(diǎn),
由題意可得函數(shù)f(x)的圖象(藍(lán)線)
和函數(shù)g(x)的圖象(紅線)有兩個交點(diǎn),
如圖所示:KOA=
1
2
,
數(shù)形結(jié)合可得
1
2
<k<1,
故選:B.
點(diǎn)評:本題主要考查函數(shù)的零點(diǎn)與方程的根的關(guān)系,體現(xiàn)了轉(zhuǎn)化、數(shù)形結(jié)合的數(shù)學(xué)思想,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}的前n項和為Sn,若a1+a3+a8=9,a6=9,則S9的值是( 。
A、64B、72
C、54D、以上都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線mx2-y2=1經(jīng)過拋物線y2=2x的焦點(diǎn),則m的值為(  )
A、4
B、1
C、
1
2
D、
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知簡諧振動f(x)=Asin(ωx+φ)(|φ|<
π
2
)的振幅為
3
2
,圖象上相鄰最高點(diǎn)與最低點(diǎn)之間的距離為5,且過點(diǎn)(0,
3
4
),則該簡諧振動的頻率與初相分別為( 。
A、
1
6
,
π
6
B、
1
10
,
π
6
C、
π
4
,
π
6
D、
1
6
,
π
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列結(jié)論中,錯誤的是( 。
A、x,y均為正數(shù),則
x
y
+
y
x
≥2
B、a為正數(shù),則(1+a)(a+
1
a
)≥3
C、lgx+logx10≥2,其中x>1
D、
x2+2
x2+1
≥2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x-a(x+1)ln(x+1),(x>-1,a≥0).
(1)當(dāng)a=1時,若方程f(x)=t在[-
1
2
,1]
上有兩個實(shí)數(shù)解,求實(shí)數(shù)t的取值范圍;
(2)求函數(shù)f(x)在定義域上零點(diǎn)個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左焦點(diǎn)F1(-c,0)(c>0)作圓x2+y2=
a2
4
的切線,切點(diǎn)為E,直線F1E交雙曲線右支于點(diǎn)P,若
OE
=
1
2
OF1
+
OP
),則雙曲線的離心率為( 。
A、
9
4
B、
3
2
C、
10
2
D、
5
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

方程8x2-6x+2k+1=0的兩根能否是一個直角三角形的兩個銳角的正弦值?若能,試求出k值,若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(x-1)ln(x-1).
(1)設(shè)函數(shù)g(x)=-a(x-1)+f(x)在區(qū)間[2,e2+1]上不單調(diào),求實(shí)數(shù)a的取值范圍;
(2)若k∈Z,且f(x)+x-1-k(x-2)>0對x>2恒成立,求k的最大值.

查看答案和解析>>

同步練習(xí)冊答案