5.如圖,PO⊥平面ABCD,點(diǎn)O在AB上,EA∥PO,四邊形ABCD為直角梯形,BC⊥AB,BC=CD=BO=PO,EA=AO=$\frac{1}{2}$CD=1
(1)求證:BC⊥平面ABP;
(2)直線PE上是否存在點(diǎn)M,使DM∥平面PBC,若存在,求出點(diǎn)M;若不存在,說明理由.

分析 (1)通過BC⊥PO,AB⊥BC,PO∩AB=O,即可證明BC⊥平面ABP;
(2)取PO的中點(diǎn)N,連結(jié)EN并延長(zhǎng)交PB于F,由平面幾何知識(shí)能證明DE∥平面PBC,即可得解.

解答 (本題滿分為14分)
證明:(1)∵PO⊥平面ABCD,BC?平面ABCD,
∴BC⊥PO,
又∵BC⊥AB,AB∩PO=O,AB?平面ABP,PO?平面ABP,
∴BC⊥平面ABP,…6分
(2)點(diǎn)E即為所求的點(diǎn),即點(diǎn)M與點(diǎn)E重合.
取PO的中點(diǎn)N,連結(jié)EN并延長(zhǎng)交PB于F,
∵EA=1,PO=2,
∴NO=1,
又EA與PO都與平面ABCD垂直,
∴EF∥AB,
∴F為PB的中點(diǎn),
∴NF=21OB=1,
∴EF=2,
又CD=2,EF∥AB∥CD,
∴四邊形DCFE為平行四邊形,
∴DE∥CF,
∵CF?平面PBC,DE?平面PBC,
∴DE∥平面PBC.
∴當(dāng)M與E重合時(shí)即可.…14分.

點(diǎn)評(píng) 本題考查直線與平面垂直的證明,考查滿足條件的點(diǎn)的判斷,考查空間想象能力和推理論證能力,解題時(shí)要認(rèn)真審題,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.如圖,在正方體ABCD-A1B1C1D1中,二面角C1-AB-D的平面角等于( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知f(x)滿足f(x+2)=3f(x),且當(dāng)x∈(0,2]時(shí),f(x)=2x
(1)求f(log2$\sqrt{3}$),f(5)的值;
(2)求當(dāng)x∈(4,6]時(shí)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.如圖,已知A,B分別是函數(shù)f(x)=$\sqrt{3}$sinωx(ω>0)在y軸右側(cè)圖象上的第一個(gè)最高點(diǎn)和第一個(gè)最低點(diǎn),且∠AOB=$\frac{π}{2}$,則該函數(shù)的周期是4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知F1,F(xiàn)2是雙曲線E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的左,右焦點(diǎn),點(diǎn)M在E上,MF1與x軸垂直,sin∠MF2F1=$\frac{1}{3}$,則E的離心率為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.f(x)是定義在R上的奇函數(shù),當(dāng)x>0時(shí),f(x)=x2+2x-1,
(1)求f(-2);
(2)求f(x)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x-y≥0}\\{x+y≤2}\\{y≥0}\end{array}\right.$,則目標(biāo)函數(shù)z=2x+y 的取值范圍是[0,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若雙曲線$\frac{x^2}{16}-\frac{y^2}{4}$=1右支上的一點(diǎn)M到雙曲線右焦點(diǎn)F2的距離為|MF2|=4,那么點(diǎn)M到左焦點(diǎn)F1的距離|MF1|=( 。
A.2B.4C.8D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.某廠2006年的產(chǎn)值為a萬元,預(yù)計(jì)產(chǎn)值每年以n%遞增,則該廠到2018年的產(chǎn)值(單位:萬元)是( 。
A.a(1+n%)13B.a(1+n%)12C.a(1+n%)11D.$\frac{10}{9}a{(1-n%)^{12}}$

查看答案和解析>>

同步練習(xí)冊(cè)答案