(本題滿分12分)
已知函數(shù),其中
(1) 若為R上的奇函數(shù),求的值;
(2) 若常數(shù),且對任意恒成立,求的取值范圍.
(Ⅰ) (Ⅱ).
【解析】本試題主要是考查了函數(shù)的奇偶性以及函數(shù)與不等式的關系的運用。
(1)若為奇函數(shù),,,即
由,有,-
(2)常數(shù),且對任意恒成立,則只需要研究函數(shù)的最大值小于零即可,得到參數(shù)m的范圍。
解:(Ⅰ) 若為奇函數(shù),,,即 ,---2分
由,有,---4分
此時,是R上的奇函數(shù),故所求的值為
(Ⅱ) ① 當時, 恒成立,----6分
② 當時,原不等式可變形為 即 恒成立—7分
∴ 只需對,滿足 恒成立-----9分
對(1)式:令,當時,,
則在上單調(diào)遞減,
對(2)式:令,當時,,
則在 上單調(diào)遞增,---11分
由①、②可知,所求的取值范圍是 .---12分
科目:高中數(shù)學 來源: 題型:
π | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本題滿分12分)已知數(shù)列是首項為,公比的等比數(shù)列,,
設,數(shù)列.
(1)求數(shù)列的通項公式;(2)求數(shù)列的前n項和Sn.
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年上海市金山區(qū)高三上學期期末考試數(shù)學試卷(解析版) 題型:解答題
(本題滿分12分,第1小題6分,第2小題6分)
已知集合A={x| | x–a | < 2,xÎR },B={x|<1,xÎR }.
(1) 求A、B;
(2) 若,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年安徽省高三10月月考理科數(shù)學試卷(解析版) 題型:解答題
(本題滿分12分)
設函數(shù)(,為常數(shù)),且方程有兩個實根為.
(1)求的解析式;
(2)證明:曲線的圖像是一個中心對稱圖形,并求其對稱中心.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年重慶市高三第二次月考文科數(shù)學 題型:解答題
(本題滿分12分,(Ⅰ)小問4分,(Ⅱ)小問6分,(Ⅲ)小問2分.)
如圖所示,直二面角中,四邊形是邊長為的正方形,,為上的點,且⊥平面
(Ⅰ)求證:⊥平面
(Ⅱ)求二面角的大;
(Ⅲ)求點到平面的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com